論文の概要: Genetic prediction of quantitative traits: a machine learner's guide
focused on height
- arxiv url: http://arxiv.org/abs/2310.04028v1
- Date: Fri, 6 Oct 2023 05:43:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-10 01:24:34.541690
- Title: Genetic prediction of quantitative traits: a machine learner's guide
focused on height
- Title(参考訳): 定量的特徴の遺伝的予測:身長に着目した機械学習者の指導
- Authors: Lucie Bourguignon and Caroline Weis and Catherine R. Jutzeler and
Michael Adamer
- Abstract要約: 本稿では,機械学習コミュニティにおけるアートモデルの現状と関連する微妙さについて概観する。
heightを連続評価された表現型の例として使用し、ベンチマークデータセット、共同創設者、機能選択、一般的なメトリクスを紹介します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning and deep learning have been celebrating many successes in
the application to biological problems, especially in the domain of protein
folding. Another equally complex and important question has received relatively
little attention by the machine learning community, namely the one of
prediction of complex traits from genetics. Tackling this problem requires
in-depth knowledge of the related genetics literature and awareness of various
subtleties associated with genetic data. In this guide, we provide an overview
for the machine learning community on current state of the art models and
associated subtleties which need to be taken into consideration when developing
new models for phenotype prediction. We use height as an example of a
continuous-valued phenotype and provide an introduction to benchmark datasets,
confounders, feature selection, and common metrics.
- Abstract(参考訳): 機械学習とディープラーニングは、生物学的問題、特にタンパク質折り畳み領域への応用で多くの成功を祝っている。
別の同様に複雑で重要な質問は、機械学習コミュニティ、すなわち遺伝学から複雑な特徴を予測することの比較的少ない関心を集めている。
この問題に取り組むには、関連する遺伝学文献の深い知識と、遺伝データに関連する様々な微妙な知識が必要である。
本ガイドでは,表現型予測のための新しいモデルを開発する際に考慮する必要がある,芸術モデルの現状と関連する微妙さについて,機械学習コミュニティに概説する。
heightを連続評価表現型の例として使用し、ベンチマークデータセット、共同創設者、機能選択、一般的なメトリクスを紹介します。
関連論文リスト
- Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - A Comparative Analysis of Gene Expression Profiling by Statistical and
Machine Learning Approaches [1.8954222800767324]
がん検体を分類する機械学習モデルの生物学的および方法論的限界について論じる。
遺伝子ランキングはこれらのモデルに適応した説明可能性法から得られる。
ブラックボックスニューラルネットワークによって学習された情報は、微分表現の概念と関連している。
論文 参考訳(メタデータ) (2024-02-01T18:17:36Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
遺伝子ワイド・アソシエーション(GWAS)は、遺伝的変異と特定の形質の関係を同定するために用いられる。
画像遺伝学の表現学習は、GWASによって引き起こされる固有の課題により、ほとんど探索されていない。
本稿では,GWAS の具体的な課題に対処するために,トランスモーダル学習フレームワーク Genetic InfoMax (GIM) を提案する。
論文 参考訳(メタデータ) (2023-09-26T03:59:21Z) - Studying Limits of Explainability by Integrated Gradients for Gene
Expression Models [3.220287168504093]
重要度によるランク付け機能は,バイオマーカーの同定に十分ではないことを示す。
バイオマーカーが真理を知らないままに関係する原因を反映しているかどうかを評価することは難しいため、階層的モデルを提案することで遺伝子発現データをシミュレートする。
論文 参考訳(メタデータ) (2023-03-19T19:54:15Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
がんは心臓血管疾患の2番目の死因である。
遺伝子発現は癌の早期発見において基本的な役割を担っている。
本研究は,機械学習を用いた癌分類における遺伝子発現解析の最近の進歩を概説する。
論文 参考訳(メタデータ) (2023-01-28T15:03:03Z) - Feature extraction using Spectral Clustering for Gene Function
Prediction [0.4492444446637856]
本稿では,クラスタ分析と階層的マルチラベル分類を組み合わせたアノテーション問題に対する,シリコアプローチの新たなアプローチを提案する。
提案手法は、世界で最も支配的かつ生産的な作物であるゼア・メイズ(Zia mays)のケーススタディに適用される。
論文 参考訳(メタデータ) (2022-03-25T10:17:36Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
ラベルのないデータセットから3次元神経形態の低次元表現を学習するためのデータ駆動型アプローチであるGraphDINOを提案する。
2つの異なる種と複数の脳領域において、この方法では、専門家による手動の特徴に基づく分類と同程度に形態学的細胞型クラスタリングが得られることを示す。
提案手法は,大規模データセットにおける新しい形態的特徴や細胞型の発見を可能にする可能性がある。
論文 参考訳(メタデータ) (2021-12-23T12:17:47Z) - Expectile Neural Networks for Genetic Data Analysis of Complex Diseases [3.0088453915399747]
本研究では、複雑な疾患の遺伝子データ解析のための予測型ニューラルネットワーク(ENN)法を開発した。
期待回帰と同様に、ERNは遺伝子変異と疾患の表現型との関係を包括的に把握する。
提案手法は,遺伝子変異と疾患表現型との間に複雑な関係がある場合,既存の予測回帰よりも優れていた。
論文 参考訳(メタデータ) (2020-10-26T21:07:40Z) - A Cross-Level Information Transmission Network for Predicting Phenotype
from New Genotype: Application to Cancer Precision Medicine [37.442717660492384]
本稿では,CLEIT(Cross-Level Information Transmission Network)フレームワークを提案する。
ドメイン適応にインスパイアされたCLEITは、まずハイレベルドメインの潜在表現を学び、その後、接地木埋め込みとして利用する。
体細胞突然変異による抗がん剤感受性の予測におけるCLEITの有効性と性能の向上を示す。
論文 参考訳(メタデータ) (2020-10-09T22:01:00Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。