論文の概要: Kick Bad Guys Out! Zero-Knowledge-Proof-Based Anomaly Detection in
Federated Learning
- arxiv url: http://arxiv.org/abs/2310.04055v2
- Date: Mon, 5 Feb 2024 23:27:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-07 20:00:24.421680
- Title: Kick Bad Guys Out! Zero-Knowledge-Proof-Based Anomaly Detection in
Federated Learning
- Title(参考訳): 悪い奴を蹴飛ばせ!
フェデレーション学習におけるゼロ知識に基づく異常検出
- Authors: Shanshan Han, Wenxuan Wu, Baturalp Buyukates, Weizhao Jin, Qifan
Zhang, Yuhang Yao, Salman Avestimehr, Chaoyang He
- Abstract要約: Federated Learning (FL) システムは敵の攻撃に対して脆弱である。
現在の防衛方法は現実世界のFLシステムでは不足している。
本稿では,現実世界のFLシステムを対象とした新しい異常検出手法を提案する。
- 参考スコア(独自算出の注目度): 23.028996086241268
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) systems are vulnerable to adversarial attacks, where
malicious clients submit poisoned models to prevent the global model from
converging or plant backdoors to induce the global model to misclassify some
samples. Current defense methods fall short in real-world FL systems, as they
either rely on impractical prior knowledge or introduce accuracy loss even when
no attack happens. Also, these methods do not offer a protocol for verifying
the execution, leaving participants doubtful about the correct execution of the
mechanism. To address these issues, we propose a novel anomaly detection
strategy designed for real-world FL systems. Our approach activates the defense
only upon occurrence of attacks, and removes malicious models accurately,
without affecting the benign ones. Additionally, our approach incorporates
zero-knowledge proofs to ensure the integrity of defense mechanisms.
Experimental results demonstrate the effectiveness of our approach in enhancing
the security of FL systems against adversarial attacks.
- Abstract(参考訳): 悪意のあるクライアントが毒のモデルを提出して、グローバルモデルが収束したり、バックドアを植えたりしないようにし、グローバルモデルにいくつかのサンプルを誤分類させる。
現在の防衛手法は、実世界のflシステムでは、非実用的な事前知識に依存するか、攻撃が起こらない場合でも精度の損失をもたらすため、不足している。
また、これらの手法は実行を検証するプロトコルを提供しておらず、参加者はメカニズムの正しい実行を疑っている。
そこで本研究では,現実のFLシステムを対象とした新しい異常検出手法を提案する。
本手法は攻撃発生時にのみ防御を活性化し,無害なモデルに影響を与えずに悪意のあるモデルを正確に除去する。
さらに, 防御機構の完全性を保証するため, ゼロ知識証明を取り入れている。
実験結果は,flシステムの敵攻撃に対する安全性向上に本手法の有効性を示す。
関連論文リスト
- Poisoning with A Pill: Circumventing Detection in Federated Learning [33.915489514978084]
本稿では,FLにおける検出に対する既存のFL中毒攻撃の有効性とステルス性を高めるために,汎用的かつ攻撃に依存しない拡張手法を提案する。
具体的には、FLトレーニング中に、戦略的にピルを構築、生成、注入する3段階の方法論を用いており、それに従ってピル構築、ピル中毒およびピル注入と命名されている。
論文 参考訳(メタデータ) (2024-07-22T05:34:47Z) - Securing NextG Systems against Poisoning Attacks on Federated Learning:
A Game-Theoretic Solution [9.800359613640763]
本稿では,フェデレートラーニング(FL)システムにおける毒性攻撃と防御相互作用について検討する。
FLは、クライアントがデータサンプルを交換する必要なしに、グローバルモデルを集合的にトレーニングする。
悪意のあるクライアントの存在は、偽造されたローカルモデル交換を通じてグローバルモデルを操作するためのトレーニングデータを汚染するリスクをもたらす。
論文 参考訳(メタデータ) (2023-12-28T17:52:21Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Data-Agnostic Model Poisoning against Federated Learning: A Graph
Autoencoder Approach [65.2993866461477]
本稿では,フェデレートラーニング(FL)に対するデータに依存しないモデル中毒攻撃を提案する。
この攻撃はFLトレーニングデータの知識を必要とせず、有効性と検出不能の両方を達成する。
実験により、FLの精度は提案した攻撃の下で徐々に低下し、既存の防御機構では検出できないことが示された。
論文 参考訳(メタデータ) (2023-11-30T12:19:10Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - A Random-patch based Defense Strategy Against Physical Attacks for Face
Recognition Systems [3.6202815454709536]
顔認識システム(FRS)の物理的攻撃を頑健に検出するランダムパッチ型防御戦略を提案する。
本手法は実世界の顔認識システムに容易に適用でき,検出性能を高めるために他の防御方法にも拡張できる。
論文 参考訳(メタデータ) (2023-04-16T16:11:56Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - Backdoor Defense in Federated Learning Using Differential Testing and
Outlier Detection [24.562359531692504]
バックドア攻撃からFLシステムを保護するための自動防御フレームワークであるDifFenseを提案する。
提案手法は,グローバルモデルの平均バックドア精度を4%以下に低減し,偽陰性率ゼロを達成する。
論文 参考訳(メタデータ) (2022-02-21T17:13:03Z) - Certifiers Make Neural Networks Vulnerable to Availability Attacks [70.69104148250614]
私たちは初めて、逆転戦略が敵によって意図的に引き起こされる可能性があることを示します。
いくつかの入力や摂動のために自然に発生する障害に加えて、敵は故意にフォールバックを誘発するために訓練時間攻撃を使用することができる。
我々は2つの新しいアベイラビリティーアタックを設計し、これらの脅威の実用的妥当性を示す。
論文 参考訳(メタデータ) (2021-08-25T15:49:10Z) - Untargeted Poisoning Attack Detection in Federated Learning via Behavior
Attestation [7.979659145328856]
Federated Learning(FL)は、機械学習(ML)におけるパラダイムであり、データプライバシ、セキュリティ、アクセス権、異種情報問題へのアクセスを扱う。
その利点にもかかわらず、flベースのml技術によるサイバー攻撃は利益を損なう可能性がある。
悪意のあるワーカを検出するために,状態永続化を通じて個々のノードのトレーニングを監視する防御機構であるattestedflを提案する。
論文 参考訳(メタデータ) (2021-01-24T20:52:55Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。