論文の概要: Faithful Knowledge Graph Explanations for Commonsense Reasoning
- arxiv url: http://arxiv.org/abs/2310.04910v4
- Date: Sat, 22 Jun 2024 16:03:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 04:48:52.719396
- Title: Faithful Knowledge Graph Explanations for Commonsense Reasoning
- Title(参考訳): 常識推論のための忠実な知識グラフ記述法
- Authors: Weihe Zhai, Arkaitz Zubiaga,
- Abstract要約: 言語モデル(LM)と知識グラフ(KG)の融合は、常識的質問応答において広く利用されている。
現在の手法は、しばしば忠実さをデコードするパスを見落とし、グラフエンコーダ出力とモデル予測の間にばらつきをもたらす。
本研究は,LM-KGのミスアライメントと相反する効果を,突発的な説明を引き起こす重要な要因として同定する。
- 参考スコア(独自算出の注目度): 7.242609314791262
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The fusion of language models (LMs) and knowledge graphs (KGs) is widely used in commonsense question answering, but generating faithful explanations remains challenging. Current methods often overlook path decoding faithfulness, leading to divergence between graph encoder outputs and model predictions. We identify confounding effects and LM-KG misalignment as key factors causing spurious explanations. To address this, we introduce the LM-KG Fidelity metric to assess KG representation reliability and propose the LM-KG Distribution-aware Alignment (\textit{LKDA}) algorithm to improve explanation faithfulness. Without ground truth, we evaluate KG explanations using the proposed Fidelity-Sparsity Trade-off Curve. Experiments on CommonsenseQA and OpenBookQA show that LKDA significantly enhances explanation fidelity and model performance, highlighting the need to address distributional misalignment for reliable commonsense reasoning.
- Abstract(参考訳): 言語モデル(LM)と知識グラフ(KG)の融合は、常識的な質問応答において広く用いられているが、忠実な説明を生み出すことは依然として難しい。
現在の手法は、しばしば忠実さをデコードするパスを見落とし、グラフエンコーダ出力とモデル予測の間にばらつきをもたらす。
本研究は,LM-KGのミスアライメントと相反する効果を,突発的な説明を引き起こす重要な要因として同定する。
そこで本研究では,KG表現の信頼性を評価するためのLM-KGフィデリティ尺度を導入し,説明忠実度を改善するためのLM-KG分布認識アライメント(\textit{LKDA})アルゴリズムを提案する。
基礎的な事実を欠くことなく,提案したF-Sparsity Trade-off Curveを用いてKGの説明を評価する。
CommonsenseQAとOpenBookQAの実験では、LKDAは説明の忠実度とモデル性能を著しく向上させ、信頼性の高いCommonsense推論のための分散的不整合に対処する必要性を強調している。
関連論文リスト
- OCEAN: Offline Chain-of-thought Evaluation and Alignment in Large Language Models [68.17018458283651]
本研究は,LLMのチェーン・オブ・思想能力のオフライン評価に焦点をあてる。
我々は知識グラフ(例えばWikidata5m)を使って、生成された思考の連鎖に対するフィードバックを提供する。
提案手法に基づいてLCMを最適化する方法を示す。
論文 参考訳(メタデータ) (2024-10-31T07:48:44Z) - Decoding on Graphs: Faithful and Sound Reasoning on Knowledge Graphs through Generation of Well-Formed Chains [66.55612528039894]
知識グラフ(KG)は質問応答(QA)のための信頼できる知識ソースとして機能する。
我々は、LLMとKGの深い相乗効果を促進する新しいフレームワークであるDoG(Decoding on Graphs)を提案する。
様々なKGQAタスクに対して異なるバックグラウンドKGを用いた実験により、DoGが優れた、堅牢なパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-10-24T04:01:40Z) - Graph-constrained Reasoning: Faithful Reasoning on Knowledge Graphs with Large Language Models [83.28737898989694]
大規模言語モデル(LLM)は知識ギャップと幻覚のために忠実な推論に苦しむ。
グラフ制約推論(GCR)は、KGにおける構造的知識とLLMにおける非構造的推論を橋渡しする新しいフレームワークである。
GCRは最先端のパフォーマンスを達成し、追加のトレーニングをすることなく、見えないKGに対して強力なゼロショット一般化性を示す。
論文 参考訳(メタデータ) (2024-10-16T22:55:17Z) - A Prompt-Based Knowledge Graph Foundation Model for Universal In-Context Reasoning [17.676185326247946]
そこで本研究では,テキスト内学習,すなわちKG-ICLを介し,プロンプトに基づくKGファウンデーションモデルを提案する。
クエリにおけるエンティティや関係を発見できないような一般化機能を備えたプロンプトグラフを符号化するために,まず統一トークン化器を提案する。
そこで我々は,プロンプトエンコーディングとKG推論を行う2つのメッセージパッシングニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2024-10-16T06:47:18Z) - Reasoning on Graphs: Faithful and Interpretable Large Language Model
Reasoning [104.92384929827776]
大規模言語モデル(LLM)は複雑なタスクにおいて顕著な推論能力を示している。
彼らは推論中に最新の知識と幻覚を欠いている。
知識グラフ(KG)は、推論のための信頼できる知識源を提供する。
論文 参考訳(メタデータ) (2023-10-02T10:14:43Z) - Explainable Sparse Knowledge Graph Completion via High-order Graph
Reasoning Network [111.67744771462873]
本稿では,スパース知識グラフ(KG)のための新しい説明可能なモデルを提案する。
高次推論をグラフ畳み込みネットワーク、すなわちHoGRNに結合する。
情報不足を緩和する一般化能力を向上させるだけでなく、解釈可能性も向上する。
論文 参考訳(メタデータ) (2022-07-14T10:16:56Z) - DSKReG: Differentiable Sampling on Knowledge Graph for Recommendation
with Relational GNN [59.160401038969795]
我々は,GNN(DSKReG)を用いた推薦のための知識グラフの識別可能なサンプリングを提案する。
そこで本研究では,モデル学習手順と組み合わせて,関連する項目の選択を最適化する,識別可能なサンプリング戦略を考案する。
実験の結果,我々のモデルは最先端のKGベースのレコメンデータシステムよりも優れていた。
論文 参考訳(メタデータ) (2021-08-26T16:19:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。