論文の概要: Beyond Text: A Deep Dive into Large Language Models' Ability on
Understanding Graph Data
- arxiv url: http://arxiv.org/abs/2310.04944v1
- Date: Sat, 7 Oct 2023 23:25:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-12 14:16:43.608944
- Title: Beyond Text: A Deep Dive into Large Language Models' Ability on
Understanding Graph Data
- Title(参考訳): テキストを超えて: グラフデータ理解における大規模言語モデルの能力
- Authors: Yuntong Hu, Zheng Zhang, Liang Zhao
- Abstract要約: 大規模言語モデル(LLM)は多くの自然言語処理タスクにおいて顕著な性能を達成している。
LLMがグラフデータを効果的に処理し、トポロジ構造を利用して性能を向上させることができるかどうかを評価することを目的とする。
LLMの性能を特殊グラフモデルと比較することにより、グラフ解析にLLMを使用する際の長所と短所について考察する。
- 参考スコア(独自算出の注目度): 13.524529952170672
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have achieved impressive performance on many
natural language processing tasks. However, their capabilities on
graph-structured data remain relatively unexplored. In this paper, we conduct a
series of experiments benchmarking leading LLMs on diverse graph prediction
tasks spanning node, edge, and graph levels. We aim to assess whether LLMs can
effectively process graph data and leverage topological structures to enhance
performance, compared to specialized graph neural networks. Through varied
prompt formatting and task/dataset selection, we analyze how well LLMs can
interpret and utilize graph structures. By comparing LLMs' performance with
specialized graph models, we offer insights into the strengths and limitations
of employing LLMs for graph analytics. Our findings provide insights into LLMs'
capabilities and suggest avenues for further exploration in applying them to
graph analytics.
- Abstract(参考訳): 大規模言語モデル (LLM) は多くの自然言語処理タスクにおいて顕著な性能を達成した。
しかし、グラフ構造データに関する彼らの能力は、比較的未調査のままである。
本稿では,ノード,エッジ,グラフレベルにまたがる多種多様なグラフ予測タスクにおいて,LLMをベンチマークする一連の実験を行う。
我々は,LLMがグラフデータを効果的に処理し,トポロジ的構造を利用して性能を向上させることができるかを評価することを目的とする。
様々なプロンプトフォーマッティングとタスク/データセットの選択を通じて、LLMがグラフ構造をいかにうまく解釈し活用できるかを分析する。
LLMの性能を特殊グラフモデルと比較することにより、グラフ解析にLLMを使用する際の長所と短所について考察する。
本研究は, LLMの能力に関する知見を提供し, グラフ解析に適用するためのさらなる研究の道筋を示唆する。
関連論文リスト
- Let's Ask GNN: Empowering Large Language Model for Graph In-Context Learning [28.660326096652437]
本稿では,逐次テキスト処理とグラフ構造化データのギャップを埋める新しいアプローチであるAskGNNを紹介する。
AskGNNはグラフニューラルネットワーク(GNN)を利用した構造強化レトリバーを使用して、グラフをまたいだラベル付きノードを選択する。
3つのタスクと7つのLLMにわたる実験は、グラフタスクのパフォーマンスにおいてAskGNNが優れていることを示す。
論文 参考訳(メタデータ) (2024-10-09T17:19:12Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
この研究は、グラフパターンタスクにおける大規模言語モデルの能力を評価するためのベンチマークを導入する。
我々は,LLMが用語的記述と位相的記述の両方に基づいて,グラフパターンを理解できるかどうかを評価するベンチマークを開発した。
私たちのベンチマークでは、合成データセットと実際のデータセットの両方と、11のタスクと7のモデルで構成されています。
論文 参考訳(メタデータ) (2024-10-04T04:48:33Z) - Can Large Language Models Analyze Graphs like Professionals? A Benchmark, Datasets and Models [90.98855064914379]
グラフを処理するために,大規模言語モデル(LLM)のベンチマークであるProGraphを導入する。
その結果,現在のLCMの性能は不満足であり,最高のモデルでは36%の精度しか達成できないことがわかった。
本研究では,6つの広く使用されているグラフライブラリに基づいて,クローリングされたドキュメントと自動生成コードを含むLLM4Graphデータセットを提案する。
論文 参考訳(メタデータ) (2024-09-29T11:38:45Z) - Revisiting the Graph Reasoning Ability of Large Language Models: Case Studies in Translation, Connectivity and Shortest Path [53.71787069694794]
大規模言語モデル(LLM)のグラフ推論能力に着目する。
グラフ記述変換,グラフ接続,最短パス問題という3つの基本グラフタスクにおけるLLMの能力を再考する。
この結果から,LLMはテキスト記述によるグラフ構造理解に失敗し,これらの基本課題に対して様々な性能を示すことが可能であることが示唆された。
論文 参考訳(メタデータ) (2024-08-18T16:26:39Z) - Investigating Instruction Tuning Large Language Models on Graphs [37.20541711360419]
グラフ関連のタスクにLLM(Large Language Models)を適用することへの関心が高まっている。
本研究は,実世界のグラフに係わる命令追従型LLMの能力について考察する。
論文 参考訳(メタデータ) (2024-08-10T06:54:35Z) - A Survey of Large Language Models on Generative Graph Analytics: Query, Learning, and Applications [4.777453721753589]
大規模言語モデル(LLM)は、様々なNLPおよびマルチモードタスクを扱う強力な一般化能力を示した。
グラフ学習モデルと比較して、LLMはグラフタスクの一般化の課題に対処する上で、優れたアドバンテージを持っている。
LLM-based generative graph analysis (LLM-GGA) の重要な問題点を3つのカテゴリで検討した。
論文 参考訳(メタデータ) (2024-04-23T07:39:24Z) - Exploring the Potential of Large Language Models in Graph Generation [51.046188600990014]
グラフ生成は、与えられたプロパティを持つグラフを生成するために、大きな言語モデル(LLM)を必要とする。
本稿では,LLMのグラフ生成能力について,系統的なタスク設計と実験による検討を行う。
評価の結果,LLM,特にGPT-4は,グラフ生成タスクに予備的能力を示すことがわかった。
論文 参考訳(メタデータ) (2024-03-21T12:37:54Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
大規模言語モデル (LLMs) が最前線として登場し、様々なアプリケーションにおいて非並列の長所を示している。
LLMとグラフ構造化データを組み合わせることは、非常に興味深いトピックです。
本稿では、そのような統合を2つの主要なカテゴリに分岐する。
論文 参考訳(メタデータ) (2023-10-09T07:59:34Z) - Exploring the Potential of Large Language Models (LLMs) in Learning on
Graphs [59.74814230246034]
大規模言語モデル(LLM)は、広範な共通知識と強力な意味理解能力を持つことが証明されている。
LLMs-as-EnhancersとLLMs-as-Predictorsの2つのパイプラインについて検討する。
論文 参考訳(メタデータ) (2023-07-07T05:31:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。