論文の概要: Let's Ask GNN: Empowering Large Language Model for Graph In-Context Learning
- arxiv url: http://arxiv.org/abs/2410.07074v1
- Date: Wed, 9 Oct 2024 17:19:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 22:37:20.478585
- Title: Let's Ask GNN: Empowering Large Language Model for Graph In-Context Learning
- Title(参考訳): GNNに聞く - グラフインコンテキスト学習のための大規模言語モデル
- Authors: Zhengyu Hu, Yichuan Li, Zhengyu Chen, Jingang Wang, Han Liu, Kyumin Lee, Kaize Ding,
- Abstract要約: 本稿では,逐次テキスト処理とグラフ構造化データのギャップを埋める新しいアプローチであるAskGNNを紹介する。
AskGNNはグラフニューラルネットワーク(GNN)を利用した構造強化レトリバーを使用して、グラフをまたいだラベル付きノードを選択する。
3つのタスクと7つのLLMにわたる実験は、グラフタスクのパフォーマンスにおいてAskGNNが優れていることを示す。
- 参考スコア(独自算出の注目度): 28.660326096652437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Textual Attributed Graphs (TAGs) are crucial for modeling complex real-world systems, yet leveraging large language models (LLMs) for TAGs presents unique challenges due to the gap between sequential text processing and graph-structured data. We introduce AskGNN, a novel approach that bridges this gap by leveraging In-Context Learning (ICL) to integrate graph data and task-specific information into LLMs. AskGNN employs a Graph Neural Network (GNN)-powered structure-enhanced retriever to select labeled nodes across graphs, incorporating complex graph structures and their supervision signals. Our learning-to-retrieve algorithm optimizes the retriever to select example nodes that maximize LLM performance on graph. Experiments across three tasks and seven LLMs demonstrate AskGNN's superior effectiveness in graph task performance, opening new avenues for applying LLMs to graph-structured data without extensive fine-tuning.
- Abstract(参考訳): テキスト分散グラフ(TAG)は複雑な実世界のシステムのモデリングには不可欠であるが、大規模言語モデル(LLM)をTAGに活用することは、シーケンシャルなテキスト処理とグラフ構造化データの間のギャップが原因で、独特な課題を提起する。
In-Context Learning(ICL)を活用して、グラフデータとタスク固有の情報をLLMに統合することで、このギャップを埋める新しいアプローチであるAskGNNを紹介します。
AskGNNはグラフニューラルネットワーク(GNN)を利用した構造強化レトリバーを使用して、グラフをまたいだラベル付きノードを選択し、複雑なグラフ構造とその監視信号を統合する。
学習から検索までのアルゴリズムは,グラフ上でのLLM性能を最大化するサンプルノードを選択するために,検索アルゴリズムを最適化する。
3つのタスクと7つのLLMにわたる実験は、グラフタスクのパフォーマンスにおいてAskGNNの優れた効果を示し、広範囲な微調整なしにグラフ構造化データに適用するための新たな道を開く。
関連論文リスト
- NT-LLM: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models [26.739650151993928]
グラフは、現実世界のシナリオにおける関係を表現するための基本的なデータ構造である。
グラフ関連のタスクにLLM(Large Language Models)を適用することは、大きな課題となる。
我々は,グラフ構造を効率的にエンコードする新しいフレームワークNT-LLM(Node Tokenizer for Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-10-14T17:21:57Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
この研究は、グラフパターンタスクにおける大規模言語モデルの能力を評価するためのベンチマークを導入する。
我々は,LLMが用語的記述と位相的記述の両方に基づいて,グラフパターンを理解できるかどうかを評価するベンチマークを開発した。
私たちのベンチマークでは、合成データセットと実際のデータセットの両方と、11のタスクと7のモデルで構成されています。
論文 参考訳(メタデータ) (2024-10-04T04:48:33Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
事前訓練された知識と強力なセマンティック理解能力を持つ大規模言語モデル(LLM)は、最近、視覚とテキストデータを使用してアプリケーションに恩恵をもたらす顕著な能力を示している。
E-LLaGNNは、グラフから限られたノード数を増やして、グラフ学習のメッセージパッシング手順を強化するオンデマンドLLMサービスを備えたフレームワークである。
論文 参考訳(メタデータ) (2024-07-20T22:09:42Z) - Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
言語エージェントにおけるタスクプランニングは、大規模言語モデル(LLM)の開発とともに重要な研究トピックとして浮上している。
本稿では,課題計画のためのグラフ学習に基づく手法について検討する。
我々のグラフ学習への関心は、注意のバイアスと自己回帰的損失が、グラフ上の意思決定を効果的にナビゲートするLLMの能力を妨げているという理論的な発見に起因している。
論文 参考訳(メタデータ) (2024-05-29T14:26:24Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
Graph-awareを導入します。
GPEFT - グラフ表現学習のための新しい手法。
グラフニューラルネットワーク(GNN)を用いて、隣接するノードからグラフプロンプトに構造情報をエンコードする。
我々は8つの異なるテキストリッチグラフで実施した総合的な実験を通じて,リンク予測評価において hit@1 と Mean Reciprocal Rank (MRR) の平均 2% の改善を観察し,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-04-28T18:36:59Z) - GraphEdit: Large Language Models for Graph Structure Learning [62.618818029177355]
グラフ構造学習(GSL)は、グラフ構造データ中のノード間の固有の依存関係と相互作用をキャプチャすることに焦点を当てている。
既存のGSL法は、監督信号として明示的なグラフ構造情報に大きく依存している。
グラフ構造化データの複雑なノード関係を学習するために,大規模言語モデル(LLM)を利用したグラフ編集を提案する。
論文 参考訳(メタデータ) (2024-02-23T08:29:42Z) - LLaGA: Large Language and Graph Assistant [73.71990472543027]
大規模言語とグラフアシスタント(LLaGA)は、グラフ構造化データの複雑さを扱う革新的なモデルである。
LLaGAは汎用性、一般化性、解釈性に優れており、異なるデータセットやタスク間で一貫して動作する。
実験の結果,LLaGAは4つのデータセットと3つのタスクに1つの単一モデルを用いて優れた性能を提供することがわかった。
論文 参考訳(メタデータ) (2024-02-13T02:03:26Z) - GraphGPT: Graph Instruction Tuning for Large Language Models [27.036935149004726]
グラフニューラルネットワーク(GNN)は、グラフ構造を理解するために進化してきた。
堅牢性を高めるために、自己教師付き学習(SSL)はデータ拡張の重要なツールとなっている。
本研究は,ゼロショット学習環境におけるグラフモデルの一般化を推し進めることによって,この問題に対処する。
論文 参考訳(メタデータ) (2023-10-19T06:17:46Z) - Empower Text-Attributed Graphs Learning with Large Language Models
(LLMs) [5.920353954082262]
本稿では,Large Language Models (LLMs) を用いたノード生成によるテキスト分散グラフの強化のためのプラグイン・アンド・プレイ手法を提案する。
エッジ予測器を用いて、生のデータセットに固有の構造情報をキャプチャし、新たに生成されたサンプルを元のグラフに統合する。
実験では、特に低ショットシナリオにおいて、提案したパラダイムの卓越した性能を示す。
論文 参考訳(メタデータ) (2023-10-15T16:04:28Z) - Beyond Text: A Deep Dive into Large Language Models' Ability on
Understanding Graph Data [13.524529952170672]
大規模言語モデル(LLM)は多くの自然言語処理タスクにおいて顕著な性能を達成している。
LLMがグラフデータを効果的に処理し、トポロジ構造を利用して性能を向上させることができるかどうかを評価することを目的とする。
LLMの性能を特殊グラフモデルと比較することにより、グラフ解析にLLMを使用する際の長所と短所について考察する。
論文 参考訳(メタデータ) (2023-10-07T23:25:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。