論文の概要: Towards Explainable Machine Learning: The Effectiveness of Reservoir
Computing in Wireless Receive Processing
- arxiv url: http://arxiv.org/abs/2310.04956v1
- Date: Sun, 8 Oct 2023 00:44:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-12 14:07:02.989540
- Title: Towards Explainable Machine Learning: The Effectiveness of Reservoir
Computing in Wireless Receive Processing
- Title(参考訳): 説明可能な機械学習に向けて:無線受信処理におけるリザーバコンピューティングの有効性
- Authors: Shashank Jere, Karim Said, Lizhong Zheng and Lingjia Liu
- Abstract要約: 本稿では,Reservoir Computing (RC) と呼ばれる一般的な学習手法を適用し,チャネル等化の具体的課題について検討する。
RCは従来の手法や学習に基づく手法に比べて優れた性能を示した。
また,これをシミュレーションにより最適化することにより,受信処理/シンボル検出性能の向上を示す。
- 参考スコア(独自算出の注目度): 21.843365090029987
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning has seen a rapid adoption in a variety of wireless
communications applications, including at the physical layer. While it has
delivered impressive performance in tasks such as channel equalization and
receive processing/symbol detection, it leaves much to be desired when it comes
to explaining this superior performance. In this work, we investigate the
specific task of channel equalization by applying a popular learning-based
technique known as Reservoir Computing (RC), which has shown superior
performance compared to conventional methods and other learning-based
approaches. Specifically, we apply the echo state network (ESN) as a channel
equalizer and provide a first principles-based signal processing understanding
of its operation. With this groundwork, we incorporate the available domain
knowledge in the form of the statistics of the wireless channel directly into
the weights of the ESN model. This paves the way for optimized initialization
of the ESN model weights, which are traditionally untrained and randomly
initialized. Finally, we show the improvement in receive processing/symbol
detection performance with this optimized initialization through simulations.
This is a first step towards explainable machine learning (XML) and assigning
practical model interpretability that can be utilized together with the
available domain knowledge to improve performance and enhance detection
reliability.
- Abstract(参考訳): ディープラーニングは、物理層を含む様々な無線通信アプリケーションで急速に採用されている。
チャネルの等化や処理/シンボル検出の受信といったタスクでは素晴らしいパフォーマンスを実現していますが、この優れたパフォーマンスを説明する上では、多くのことが望まれています。
本研究では,従来の手法や他の学習に基づく手法に比べて優れた性能を示す貯水池計算(rc)と呼ばれる一般的な学習ベース手法を適用し,チャネル等化の課題を検討する。
具体的には、エコー状態ネットワーク(ESN)をチャネル等化器として適用し、その動作の第一原理に基づく信号処理理解を提供する。
本研究では,無線チャネルの統計の形で利用可能なドメイン知識をESNモデルの重みに直接組み込む。
これは、伝統的に訓練されず、ランダムに初期化されるESNモデルの重み付けを最適化する道を開く。
最後に,シミュレーションにより最適化した初期化により受信処理/シンボル検出性能が向上することを示す。
これは、説明可能な機械学習(xml)への第一歩であり、利用可能なドメイン知識とともに活用できる実用的なモデル解釈可能性の割り当てであり、パフォーマンスの向上と検出信頼性の向上に寄与する。
関連論文リスト
- Towards xAI: Configuring RNN Weights using Domain Knowledge for MIMO Receive Processing [19.995241682744567]
我々は、無線通信の物理層における説明可能なAI(xAI)の分野を前進させる。
私たちはその仕事に集中する。
MIMO-OFDMは、リザーブコンピューティング(RC)フレームワークを使用した処理(シンボル検出など)を受信する。
リカレントニューラルネットワーク(RNN)の中で
本稿では,信号処理をベースとした第1原理によるRCの動作の理解について述べる。
論文 参考訳(メタデータ) (2024-10-09T17:16:11Z) - Unrolled denoising networks provably learn optimal Bayesian inference [54.79172096306631]
我々は、近似メッセージパッシング(AMP)のアンロールに基づくニューラルネットワークの最初の厳密な学習保証を証明した。
圧縮センシングでは、製品から引き出されたデータに基づいてトレーニングを行うと、ネットワークの層がベイズAMPで使用されるのと同じデノイザーに収束することを示す。
論文 参考訳(メタデータ) (2024-09-19T17:56:16Z) - Learnable Digital Twin for Efficient Wireless Network Evaluation [40.829275623191656]
ネットワークデジタルツインツ(NDT)は、ネットワークを物理的に実装する前にキーパフォーマンスインジケータ(KPI)の推定を容易にする。
本稿では,ネットワークシミュレータのための学習型NDTを提案する。
論文 参考訳(メタデータ) (2023-06-11T03:43:39Z) - Simple initialization and parametrization of sinusoidal networks via
their kernel bandwidth [92.25666446274188]
従来の活性化機能を持つネットワークの代替として、活性化を伴う正弦波ニューラルネットワークが提案されている。
まず,このような正弦波ニューラルネットワークの簡易版を提案する。
次に、ニューラルタンジェントカーネルの観点からこれらのネットワークの挙動を分析し、そのカーネルが調整可能な帯域幅を持つ低域フィルタを近似することを実証する。
論文 参考訳(メタデータ) (2022-11-26T07:41:48Z) - Direct Localization in Underwater Acoustics via Convolutional Neural
Networks: A Data-Driven Approach [31.399611901926583]
ダイレクトローカライゼーション(DLOC)法は、一般的に間接的な2段階法よりも優れている。
水中音響DLOC法は環境の事前の知識を必要とする。
そこで本研究では,データ駆動型DLOC法を提案する。
論文 参考訳(メタデータ) (2022-07-20T22:40:11Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
本稿では,金属人工物削減のための適応畳み込み辞書ネットワーク(ACDNet)を提案する。
我々のACDNetは、トレーニングデータを介して、アーティファクトフリーCT画像の事前を自動で学習し、入力されたCT画像ごとに表現カーネルを適応的に調整することができる。
本手法は,モデルに基づく手法の明確な解釈可能性を継承し,学習に基づく手法の強力な表現能力を維持する。
論文 参考訳(メタデータ) (2022-05-16T06:49:36Z) - Functional Regularization for Reinforcement Learning via Learned Fourier
Features [98.90474131452588]
本稿では、入力を学習されたフーリエベースに埋め込むことにより、深層強化学習のための簡単なアーキテクチャを提案する。
その結果、状態ベースと画像ベースの両方のRLのサンプル効率が向上することがわかった。
論文 参考訳(メタデータ) (2021-12-06T18:59:52Z) - A Deep Learning Based Ternary Task Classification System Using Gramian
Angular Summation Field in fNIRS Neuroimaging Data [0.15229257192293197]
機能近赤外分光法(FNIRS)は、血流パターンを研究するために用いられる非侵襲的、経済的手法である。
提案手法は,生のfNIRS時系列データをGramian Angular Summation Fieldを用いた画像に変換する。
深層畳み込みニューラルネットワーク(Deep Convolutional Neural Network, CNN)ベースのアーキテクチャは、メンタル算術、運動画像、アイドル状態などのタスク分類に使用される。
論文 参考訳(メタデータ) (2021-01-14T22:09:35Z) - Incremental Embedding Learning via Zero-Shot Translation [65.94349068508863]
現在の最先端のインクリメンタル学習手法は、従来の分類ネットワークにおける破滅的な忘れ方問題に取り組む。
ゼロショット変換クラス増分法(ZSTCI)と呼ばれる新しい組込みネットワークのクラス増分法を提案する。
さらに、ZSTCIを既存の正規化ベースのインクリメンタル学習手法と組み合わせることで、組み込みネットワークの性能をより向上させることができる。
論文 参考訳(メタデータ) (2020-12-31T08:21:37Z) - Improving Learning Efficiency for Wireless Resource Allocation with
Symmetric Prior [28.275250620630466]
本稿では、まず、ドメイン知識を利用するための2つのアプローチのクラスを、数学的モデルの導入とディープラーニングへの事前知識の2つにまとめる。
このような総合的な事前手法が学習効率の向上にどのように活用されているかを説明するために,我々はランク付けを頼りにしている。
システム性能を達成するために必要なトレーニングサンプルは,サブキャリア数やコンテンツ数によって減少することがわかった。
論文 参考訳(メタデータ) (2020-05-18T07:57:34Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
機械学習(ML)とモデルベースアルゴリズムを組み合わせた,検出設計のシンボル化を目的とした,データ駆動型フレームワークについてレビューする。
このハイブリッドアプローチでは、よく知られたチャネルモデルに基づくアルゴリズムをMLベースのアルゴリズムで拡張し、チャネルモデル依存性を除去する。
提案手法は, 正確なチャネル入出力統計関係を知らなくても, モデルベースアルゴリズムのほぼ最適性能が得られることを示す。
論文 参考訳(メタデータ) (2020-02-14T06:58:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。