Distributional Reinforcement Learning with Online Risk-awareness
Adaption
- URL: http://arxiv.org/abs/2310.05179v2
- Date: Mon, 11 Mar 2024 15:36:19 GMT
- Title: Distributional Reinforcement Learning with Online Risk-awareness
Adaption
- Authors: Yupeng Wu, Wenjie Huang
- Abstract summary: We introduce a novel framework, Distributional RL with Online Risk Adaption (DRL-ORA)
DRL-ORA dynamically selects the epistemic risk levels via solving a total variation minimization problem online.
We show multiple classes of tasks where DRL-ORA outperforms existing methods that rely on either a fixed risk level or manually predetermined risk level.
- Score: 5.363478475460403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of reinforcement learning (RL) in practical applications requires
considering sub-optimal outcomes, which depend on the agent's familiarity with
the uncertain environment. Dynamically adjusting the level of epistemic risk
over the course of learning can tactically achieve reliable optimal policy in
safety-critical environments and tackle the sub-optimality of a static risk
level. In this work, we introduce a novel framework, Distributional RL with
Online Risk Adaption (DRL-ORA), which can quantify the aleatory and epistemic
uncertainties compositely and dynamically select the epistemic risk levels via
solving a total variation minimization problem online. The risk level selection
can be efficiently achieved through grid search using a Follow-The-Leader type
algorithm, and its offline oracle is related to "satisficing measure" (in the
decision analysis community) under a special modification of the loss function.
We show multiple classes of tasks where DRL-ORA outperforms existing methods
that rely on either a fixed risk level or manually predetermined risk level
adaption. Given the simplicity of our modifications, we believe the framework
can be easily incorporated into most RL algorithm variants.
Related papers
- Robust Reinforcement Learning with Dynamic Distortion Risk Measures [0.0]
We devise a framework to solve robust risk-aware reinforcement learning problems.
We simultaneously account for environmental uncertainty and risk with a class of dynamic robust distortion risk measures.
We construct an actor-critic algorithm to solve this class of robust risk-aware RL problems.
arXiv Detail & Related papers (2024-09-16T08:54:59Z) - Pessimism Meets Risk: Risk-Sensitive Offline Reinforcement Learning [19.292214425524303]
We study risk-sensitive reinforcement learning (RL), a crucial field due to its ability to enhance decision-making in scenarios where it is essential to manage uncertainty and minimize potential adverse outcomes.
Our work focuses on applying the entropic risk measure to RL problems.
We center on the linear Markov Decision Process (MDP) setting, a well-regarded theoretical framework that has yet to be examined from a risk-sensitive standpoint.
arXiv Detail & Related papers (2024-07-10T13:09:52Z) - Provable Risk-Sensitive Distributional Reinforcement Learning with
General Function Approximation [54.61816424792866]
We introduce a general framework on Risk-Sensitive Distributional Reinforcement Learning (RS-DisRL), with static Lipschitz Risk Measures (LRM) and general function approximation.
We design two innovative meta-algorithms: textttRS-DisRL-M, a model-based strategy for model-based function approximation, and textttRS-DisRL-V, a model-free approach for general value function approximation.
arXiv Detail & Related papers (2024-02-28T08:43:18Z) - Provably Efficient Iterated CVaR Reinforcement Learning with Function
Approximation and Human Feedback [57.6775169085215]
Risk-sensitive reinforcement learning aims to optimize policies that balance the expected reward and risk.
We present a novel framework that employs an Iterated Conditional Value-at-Risk (CVaR) objective under both linear and general function approximations.
We propose provably sample-efficient algorithms for this Iterated CVaR RL and provide rigorous theoretical analysis.
arXiv Detail & Related papers (2023-07-06T08:14:54Z) - Is Risk-Sensitive Reinforcement Learning Properly Resolved? [32.42976780682353]
We propose a novel algorithm, namely Trajectory Q-Learning (TQL), for RSRL problems with provable convergence to the optimal policy.
Based on our new learning architecture, we are free to introduce a general and practical implementation for different risk measures to learn disparate risk-sensitive policies.
arXiv Detail & Related papers (2023-07-02T11:47:21Z) - Safety Correction from Baseline: Towards the Risk-aware Policy in
Robotics via Dual-agent Reinforcement Learning [64.11013095004786]
We propose a dual-agent safe reinforcement learning strategy consisting of a baseline and a safe agent.
Such a decoupled framework enables high flexibility, data efficiency and risk-awareness for RL-based control.
The proposed method outperforms the state-of-the-art safe RL algorithms on difficult robot locomotion and manipulation tasks.
arXiv Detail & Related papers (2022-12-14T03:11:25Z) - One Risk to Rule Them All: A Risk-Sensitive Perspective on Model-Based
Offline Reinforcement Learning [25.218430053391884]
We propose risk-sensitivity as a mechanism to jointly address both of these issues.
Risk-aversion to aleatoric uncertainty discourages actions that may result in poor outcomes due to environmentity.
Our experiments show that our algorithm achieves competitive performance on deterministic benchmarks.
arXiv Detail & Related papers (2022-11-30T21:24:11Z) - Efficient Risk-Averse Reinforcement Learning [79.61412643761034]
In risk-averse reinforcement learning (RL), the goal is to optimize some risk measure of the returns.
We prove that under certain conditions this inevitably leads to a local-optimum barrier, and propose a soft risk mechanism to bypass it.
We demonstrate improved risk aversion in maze navigation, autonomous driving, and resource allocation benchmarks.
arXiv Detail & Related papers (2022-05-10T19:40:52Z) - Robust Policy Learning over Multiple Uncertainty Sets [91.67120465453179]
Reinforcement learning (RL) agents need to be robust to variations in safety-critical environments.
We develop an algorithm that enjoys the benefits of both system identification and robust RL.
arXiv Detail & Related papers (2022-02-14T20:06:28Z) - Automatic Risk Adaptation in Distributional Reinforcement Learning [26.113528145137497]
The use of Reinforcement Learning (RL) agents in practical applications requires the consideration of suboptimal outcomes.
This is especially important in safety-critical environments, where errors can lead to high costs or damage.
We show reduced failure rates by up to a factor of 7 and improved generalization performance by up to 14% compared to both risk-aware and risk-agnostic agents.
arXiv Detail & Related papers (2021-06-11T11:31:04Z) - Multi-Objective SPIBB: Seldonian Offline Policy Improvement with Safety
Constraints in Finite MDPs [71.47895794305883]
We study the problem of Safe Policy Improvement (SPI) under constraints in the offline Reinforcement Learning setting.
We present an SPI for this RL setting that takes into account the preferences of the algorithm's user for handling the trade-offs for different reward signals.
arXiv Detail & Related papers (2021-05-31T21:04:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.