論文の概要: DRL-ORA: Distributional Reinforcement Learning with Online Risk Adaption
- arxiv url: http://arxiv.org/abs/2310.05179v3
- Date: Sun, 09 Feb 2025 01:03:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:24:54.074891
- Title: DRL-ORA: Distributional Reinforcement Learning with Online Risk Adaption
- Title(参考訳): DRL-ORA:オンラインリスク適応型分散強化学習
- Authors: Yupeng Wu, Wenjie Huang, Chin Pang Ho,
- Abstract要約: オンラインリスク適応型分散RL(DRL-ORA)を提案する。
DRL-ORAは、複数のタスクのクラスにおいて、固定リスクレベルや手動で設計したリスクレベル適応に依存する既存の手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 10.04086367708522
- License:
- Abstract: One of the main challenges in reinforcement learning (RL) is that the agent has to make decisions that would influence the future performance without having complete knowledge of the environment. Dynamically adjusting the level of epistemic risk during the learning process can help to achieve reliable policies in safety-critical settings with better efficiency. In this work, we propose a new framework, Distributional RL with Online Risk Adaptation (DRL-ORA). This framework quantifies both epistemic and implicit aleatory uncertainties in a unified manner and dynamically adjusts the epistemic risk levels by solving a total variation minimization problem online. The selection of risk levels is performed efficiently via a grid search using a Follow-The-Leader-type algorithm, where the offline oracle corresponds to a "satisficing measure" under a specially modified loss function. We show that DRL-ORA outperforms existing methods that rely on fixed risk levels or manually designed risk level adaptation in multiple classes of tasks.
- Abstract(参考訳): 強化学習(RL)の主な課題の1つは、エージェントが環境を完全に理解することなく、将来のパフォーマンスに影響を与える決定をしなければならないことである。
学習過程におけるてんかんリスクのレベルを動的に調整することは、安全クリティカルな設定における信頼性の高いポリシーをより良い効率で達成するのに役立ちます。
本研究では,オンラインリスク適応(DRL-ORA)を用いた分散RLを提案する。
本枠組みは, 総変動最小化問題をオンラインで解決し, 難病リスクレベルを動的に調整する。
リスクレベルの選択は、Follow-The-Leader型アルゴリズムを用いてグリッドサーチにより効率よく行われ、オフラインオラクルは特別な修正された損失関数の下で「満足度」に対応する。
DRL-ORAは、複数のタスクのクラスにおいて、固定リスクレベルや手動で設計したリスクレベル適応に依存する既存の手法よりも優れていることを示す。
関連論文リスト
- Beyond CVaR: Leveraging Static Spectral Risk Measures for Enhanced Decision-Making in Distributional Reinforcement Learning [4.8342038441006805]
金融、ヘルスケア、ロボティクスといった分野では、最悪のシナリオを管理することが重要です。
分散強化学習(DRL)は、リスク感受性を意思決定プロセスに組み込む自然な枠組みを提供する。
より広範な静的スペクトルリスク対策(SRM)を最適化する収束保証付きDRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-01-03T20:25:41Z) - Pessimism Meets Risk: Risk-Sensitive Offline Reinforcement Learning [19.292214425524303]
リスクに敏感な強化学習(RL)は,不確実性を管理し,潜在的な有害な結果を最小限に抑えることが不可欠であるシナリオにおいて,意思決定を強化する能力において重要な分野である。
本研究は, エントロピーリスク尺度をRL問題に適用することに焦点を当てる。
我々は,リスクに敏感な観点からはまだ検討されていない理論的枠組みである線形マルコフ決定プロセス(MDP)の設定を中心としている。
論文 参考訳(メタデータ) (2024-07-10T13:09:52Z) - Provable Risk-Sensitive Distributional Reinforcement Learning with
General Function Approximation [54.61816424792866]
本稿では,リスク感性分布強化学習(RS-DisRL)と静的リプシッツリスク対策(LRM),一般関数近似について紹介する。
モデルに基づく関数近似のためのモデルベース戦略であるtextttRS-DisRL-M と、一般値関数近似のためのモデルフリーアプローチである textttRS-DisRL-V の2つの革新的なメタアルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-02-28T08:43:18Z) - Provably Efficient Iterated CVaR Reinforcement Learning with Function
Approximation and Human Feedback [57.6775169085215]
リスクに敏感な強化学習は、期待される報酬とリスクのバランスをとるポリシーを最適化することを目的としている。
本稿では,線形および一般関数近似の下で,CVaR(Iterated Conditional Value-at-Risk)を目標とする新しいフレームワークを提案する。
本稿では,この反復CVaR RLに対するサンプル効率の高いアルゴリズムを提案し,厳密な理論的解析を行う。
論文 参考訳(メタデータ) (2023-07-06T08:14:54Z) - Is Risk-Sensitive Reinforcement Learning Properly Resolved? [32.42976780682353]
そこで本稿では,RSRL問題に対して最適ポリシーに収束可能な新しいアルゴリズムであるトラジェクトリQ-Learning(TQL)を提案する。
新たな学習アーキテクチャに基づいて,さまざまなリスク対応政策を学習するための,さまざまなリスク対策の汎用的かつ実践的な実装を自由に導入できる。
論文 参考訳(メタデータ) (2023-07-02T11:47:21Z) - Safety Correction from Baseline: Towards the Risk-aware Policy in
Robotics via Dual-agent Reinforcement Learning [64.11013095004786]
本稿では,ベースラインと安全エージェントからなる二重エージェント型安全強化学習戦略を提案する。
このような分離されたフレームワークは、RLベースの制御に対して高い柔軟性、データ効率、リスク認識を可能にする。
提案手法は,難易度の高いロボットの移動・操作作業において,最先端の安全RLアルゴリズムより優れる。
論文 参考訳(メタデータ) (2022-12-14T03:11:25Z) - One Risk to Rule Them All: A Risk-Sensitive Perspective on Model-Based
Offline Reinforcement Learning [25.218430053391884]
両問題に共同で対処するためのメカニズムとしてリスク感受性を提案する。
相対的不確実性へのリスク回避は、環境に悪影響を及ぼす可能性のある行動を妨げる。
実験の結果,提案アルゴリズムは決定論的ベンチマーク上での競合性能を実現することがわかった。
論文 参考訳(メタデータ) (2022-11-30T21:24:11Z) - Efficient Risk-Averse Reinforcement Learning [79.61412643761034]
リスク逆強化学習(RL)では、リターンのリスク測定を最適化することが目標である。
特定の条件下では、これは必然的に局所最適障壁につながることを証明し、それを回避するためのソフトリスク機構を提案する。
迷路ナビゲーション,自律運転,資源配分ベンチマークにおいて,リスク回避の改善を示す。
論文 参考訳(メタデータ) (2022-05-10T19:40:52Z) - Robust Policy Learning over Multiple Uncertainty Sets [91.67120465453179]
強化学習(RL)エージェントは、安全クリティカルな環境の変動に対して堅牢である必要がある。
システム識別とロバストRLの両方の利点を享受するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-02-14T20:06:28Z) - Automatic Risk Adaptation in Distributional Reinforcement Learning [26.113528145137497]
実践的応用における強化学習(RL)エージェントの使用は、最適以下の結果を考慮する必要がある。
これは特に安全クリティカルな環境において重要であり、エラーは高いコストや損害をもたらす可能性がある。
リスク認識エージェントとリスク認識エージェントの両方と比較して, 失敗率を最大7倍に低下させ, 一般化性能を最大14%向上させた。
論文 参考訳(メタデータ) (2021-06-11T11:31:04Z) - Risk-Averse Offline Reinforcement Learning [46.383648750385575]
高度なアプリケーションでRL(Training Reinforcement Learning)エージェントを訓練することは、探索に伴うリスクのため、あまりにも禁じられている可能性がある。
O-RAAC(Offline Risk-Averse Actor-Critic)は,完全オフライン環境でリスク-Averseポリシーを学習可能なモデルフリーRLアルゴリズムである。
論文 参考訳(メタデータ) (2021-02-10T10:27:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。