DRL-ORA: Distributional Reinforcement Learning with Online Risk Adaption
- URL: http://arxiv.org/abs/2310.05179v3
- Date: Sun, 09 Feb 2025 01:03:33 GMT
- Title: DRL-ORA: Distributional Reinforcement Learning with Online Risk Adaption
- Authors: Yupeng Wu, Wenjie Huang, Chin Pang Ho,
- Abstract summary: We propose a new framework, Distributional RL with Online Risk Adaptation (DRL-ORA)
We show that DRL-ORA outperforms existing methods that rely on fixed risk levels or manually designed risk level adaptation in multiple classes of tasks.
- Score: 10.04086367708522
- License:
- Abstract: One of the main challenges in reinforcement learning (RL) is that the agent has to make decisions that would influence the future performance without having complete knowledge of the environment. Dynamically adjusting the level of epistemic risk during the learning process can help to achieve reliable policies in safety-critical settings with better efficiency. In this work, we propose a new framework, Distributional RL with Online Risk Adaptation (DRL-ORA). This framework quantifies both epistemic and implicit aleatory uncertainties in a unified manner and dynamically adjusts the epistemic risk levels by solving a total variation minimization problem online. The selection of risk levels is performed efficiently via a grid search using a Follow-The-Leader-type algorithm, where the offline oracle corresponds to a "satisficing measure" under a specially modified loss function. We show that DRL-ORA outperforms existing methods that rely on fixed risk levels or manually designed risk level adaptation in multiple classes of tasks.
Related papers
- Beyond CVaR: Leveraging Static Spectral Risk Measures for Enhanced Decision-Making in Distributional Reinforcement Learning [4.8342038441006805]
In domains such as finance, healthcare, and robotics, managing worst-case scenarios is critical.
Distributional Reinforcement Learning (DRL) provides a natural framework to incorporate risk sensitivity into decision-making processes.
We present a novel DRL algorithm with convergence guarantees that optimize for a broader class of static Spectral Risk Measures (SRM)
arXiv Detail & Related papers (2025-01-03T20:25:41Z) - Pessimism Meets Risk: Risk-Sensitive Offline Reinforcement Learning [19.292214425524303]
We study risk-sensitive reinforcement learning (RL), a crucial field due to its ability to enhance decision-making in scenarios where it is essential to manage uncertainty and minimize potential adverse outcomes.
Our work focuses on applying the entropic risk measure to RL problems.
We center on the linear Markov Decision Process (MDP) setting, a well-regarded theoretical framework that has yet to be examined from a risk-sensitive standpoint.
arXiv Detail & Related papers (2024-07-10T13:09:52Z) - Provable Risk-Sensitive Distributional Reinforcement Learning with
General Function Approximation [54.61816424792866]
We introduce a general framework on Risk-Sensitive Distributional Reinforcement Learning (RS-DisRL), with static Lipschitz Risk Measures (LRM) and general function approximation.
We design two innovative meta-algorithms: textttRS-DisRL-M, a model-based strategy for model-based function approximation, and textttRS-DisRL-V, a model-free approach for general value function approximation.
arXiv Detail & Related papers (2024-02-28T08:43:18Z) - Provably Efficient Iterated CVaR Reinforcement Learning with Function
Approximation and Human Feedback [57.6775169085215]
Risk-sensitive reinforcement learning aims to optimize policies that balance the expected reward and risk.
We present a novel framework that employs an Iterated Conditional Value-at-Risk (CVaR) objective under both linear and general function approximations.
We propose provably sample-efficient algorithms for this Iterated CVaR RL and provide rigorous theoretical analysis.
arXiv Detail & Related papers (2023-07-06T08:14:54Z) - Is Risk-Sensitive Reinforcement Learning Properly Resolved? [32.42976780682353]
We propose a novel algorithm, namely Trajectory Q-Learning (TQL), for RSRL problems with provable convergence to the optimal policy.
Based on our new learning architecture, we are free to introduce a general and practical implementation for different risk measures to learn disparate risk-sensitive policies.
arXiv Detail & Related papers (2023-07-02T11:47:21Z) - Safety Correction from Baseline: Towards the Risk-aware Policy in
Robotics via Dual-agent Reinforcement Learning [64.11013095004786]
We propose a dual-agent safe reinforcement learning strategy consisting of a baseline and a safe agent.
Such a decoupled framework enables high flexibility, data efficiency and risk-awareness for RL-based control.
The proposed method outperforms the state-of-the-art safe RL algorithms on difficult robot locomotion and manipulation tasks.
arXiv Detail & Related papers (2022-12-14T03:11:25Z) - One Risk to Rule Them All: A Risk-Sensitive Perspective on Model-Based
Offline Reinforcement Learning [25.218430053391884]
We propose risk-sensitivity as a mechanism to jointly address both of these issues.
Risk-aversion to aleatoric uncertainty discourages actions that may result in poor outcomes due to environmentity.
Our experiments show that our algorithm achieves competitive performance on deterministic benchmarks.
arXiv Detail & Related papers (2022-11-30T21:24:11Z) - Efficient Risk-Averse Reinforcement Learning [79.61412643761034]
In risk-averse reinforcement learning (RL), the goal is to optimize some risk measure of the returns.
We prove that under certain conditions this inevitably leads to a local-optimum barrier, and propose a soft risk mechanism to bypass it.
We demonstrate improved risk aversion in maze navigation, autonomous driving, and resource allocation benchmarks.
arXiv Detail & Related papers (2022-05-10T19:40:52Z) - Robust Policy Learning over Multiple Uncertainty Sets [91.67120465453179]
Reinforcement learning (RL) agents need to be robust to variations in safety-critical environments.
We develop an algorithm that enjoys the benefits of both system identification and robust RL.
arXiv Detail & Related papers (2022-02-14T20:06:28Z) - Automatic Risk Adaptation in Distributional Reinforcement Learning [26.113528145137497]
The use of Reinforcement Learning (RL) agents in practical applications requires the consideration of suboptimal outcomes.
This is especially important in safety-critical environments, where errors can lead to high costs or damage.
We show reduced failure rates by up to a factor of 7 and improved generalization performance by up to 14% compared to both risk-aware and risk-agnostic agents.
arXiv Detail & Related papers (2021-06-11T11:31:04Z) - Risk-Averse Offline Reinforcement Learning [46.383648750385575]
Training Reinforcement Learning (RL) agents in high-stakes applications might be too prohibitive due to the risk associated to exploration.
We present the Offline Risk-Averse Actor-Critic (O-RAAC), a model-free RL algorithm that is able to learn risk-averse policies in a fully offline setting.
arXiv Detail & Related papers (2021-02-10T10:27:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.