LLM-as-a-tutor in EFL Writing Education: Focusing on Evaluation of Student-LLM Interaction
- URL: http://arxiv.org/abs/2310.05191v2
- Date: Mon, 2 Sep 2024 06:24:32 GMT
- Title: LLM-as-a-tutor in EFL Writing Education: Focusing on Evaluation of Student-LLM Interaction
- Authors: Jieun Han, Haneul Yoo, Junho Myung, Minsun Kim, Hyunseung Lim, Yoonsu Kim, Tak Yeon Lee, Hwajung Hong, Juho Kim, So-Yeon Ahn, Alice Oh,
- Abstract summary: In the context of English as a Foreign Language (EFL) writing education, LLM-as-a-tutor can assist students by providing real-time feedback on their essays.
To bridge this gap, we integrate pedagogical principles to assess student-LLM interaction.
- Score: 40.76665188171691
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In the context of English as a Foreign Language (EFL) writing education, LLM-as-a-tutor can assist students by providing real-time feedback on their essays. However, challenges arise in assessing LLM-as-a-tutor due to differing standards between educational and general use cases. To bridge this gap, we integrate pedagogical principles to assess student-LLM interaction. First, we explore how LLMs can function as English tutors, providing effective essay feedback tailored to students. Second, we propose three metrics to evaluate LLM-as-a-tutor specifically designed for EFL writing education, emphasizing pedagogical aspects. In this process, EFL experts evaluate the feedback from LLM-as-a-tutor regarding quality and characteristics. On the other hand, EFL learners assess their learning outcomes from interaction with LLM-as-a-tutor. This approach lays the groundwork for developing LLMs-as-a-tutor tailored to the needs of EFL learners, advancing the effectiveness of writing education in this context.
Related papers
- Position: LLMs Can be Good Tutors in Foreign Language Education [87.88557755407815]
We argue that large language models (LLMs) have the potential to serve as effective tutors in foreign language education (FLE)
Specifically, LLMs can play three critical roles: (1) as data enhancers, improving the creation of learning materials or serving as student simulations; (2) as task predictors, serving as learner assessment or optimizing learning pathway; and (3) as agents, enabling personalized and inclusive education.
arXiv Detail & Related papers (2025-02-08T06:48:49Z) - Embracing AI in Education: Understanding the Surge in Large Language Model Use by Secondary Students [53.20318273452059]
Large language models (LLMs) like OpenAI's ChatGPT have opened up new avenues in education.
Despite school restrictions, our survey of over 300 middle and high school students revealed that a remarkable 70% of students have utilized LLMs.
We propose a few ideas to address such issues, including subject-specific models, personalized learning, and AI classrooms.
arXiv Detail & Related papers (2024-11-27T19:19:34Z) - Exploring Knowledge Tracing in Tutor-Student Dialogues using LLMs [49.18567856499736]
We investigate whether large language models (LLMs) can be supportive of open-ended dialogue tutoring.
We apply a range of knowledge tracing (KT) methods on the resulting labeled data to track student knowledge levels over an entire dialogue.
We conduct experiments on two tutoring dialogue datasets, and show that a novel yet simple LLM-based method, LLMKT, significantly outperforms existing KT methods in predicting student response correctness in dialogues.
arXiv Detail & Related papers (2024-09-24T22:31:39Z) - Large Language Model as an Assignment Evaluator: Insights, Feedback, and Challenges in a 1000+ Student Course [49.296957552006226]
Using large language models (LLMs) for automatic evaluation has become an important evaluation method in NLP research.
This report shares how we use GPT-4 as an automatic assignment evaluator in a university course with 1,028 students.
arXiv Detail & Related papers (2024-07-07T00:17:24Z) - I don't trust you (anymore)! -- The effect of students' LLM use on Lecturer-Student-Trust in Higher Education [0.0]
Large Language Models (LLMs) in platforms like Open AI's ChatGPT, has led to their rapid adoption among university students.
This study addresses the research question: How does the use of LLMs by students impact Informational and Procedural Justice, influencing Team Trust and Expected Team Performance?
Our findings indicate that lecturers are less concerned about the fairness of LLM use per se but are more focused on the transparency of student utilization.
arXiv Detail & Related papers (2024-06-21T05:35:57Z) - Student Perspectives on Using a Large Language Model (LLM) for an Assignment on Professional Ethics [0.0]
The advent of Large Language Models (LLMs) started a serious discussion among educators on how they would affect curricula, assessments, and students' competencies.
This report presents an assignment within a course on professional competencies, including some related to ethics, that computing master's students need in their careers.
arXiv Detail & Related papers (2024-04-09T09:03:47Z) - When LLMs Meet Cunning Texts: A Fallacy Understanding Benchmark for Large Language Models [59.84769254832941]
We propose a FaLlacy Understanding Benchmark (FLUB) containing cunning texts that are easy for humans to understand but difficult for models to grasp.
Specifically, the cunning texts that FLUB focuses on mainly consist of the tricky, humorous, and misleading texts collected from the real internet environment.
Based on FLUB, we investigate the performance of multiple representative and advanced LLMs.
arXiv Detail & Related papers (2024-02-16T22:12:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.