I don't trust you (anymore)! -- The effect of students' LLM use on Lecturer-Student-Trust in Higher Education
- URL: http://arxiv.org/abs/2406.14871v1
- Date: Fri, 21 Jun 2024 05:35:57 GMT
- Title: I don't trust you (anymore)! -- The effect of students' LLM use on Lecturer-Student-Trust in Higher Education
- Authors: Simon Kloker, Matthew Bazanya, Twaha Kateete,
- Abstract summary: Large Language Models (LLMs) in platforms like Open AI's ChatGPT, has led to their rapid adoption among university students.
This study addresses the research question: How does the use of LLMs by students impact Informational and Procedural Justice, influencing Team Trust and Expected Team Performance?
Our findings indicate that lecturers are less concerned about the fairness of LLM use per se but are more focused on the transparency of student utilization.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trust plays a pivotal role in Lecturer-Student-Collaboration, encompassing teaching and research aspects. The advent of Large Language Models (LLMs) in platforms like Open AI's ChatGPT, coupled with their cost-effectiveness and high-quality results, has led to their rapid adoption among university students. However, discerning genuine student input from LLM-generated output poses a challenge for lecturers. This dilemma jeopardizes the trust relationship between lecturers and students, potentially impacting university downstream activities, particularly collaborative research initiatives. Despite attempts to establish guidelines for student LLM use, a clear framework mutually beneficial for lecturers and students in higher education remains elusive. This study addresses the research question: How does the use of LLMs by students impact Informational and Procedural Justice, influencing Team Trust and Expected Team Performance? Methodically, we applied a quantitative construct-based survey, evaluated using techniques of Structural Equation Modelling (PLS- SEM) to examine potential relationships among these constructs. Our findings based on 23 valid respondents from Ndejje University indicate that lecturers are less concerned about the fairness of LLM use per se but are more focused on the transparency of student utilization, which significantly influences Team Trust positively. This research contributes to the global discourse on integrating and regulating LLMs and subsequent models in education. We propose that guidelines should support LLM use while enforcing transparency in Lecturer-Student- Collaboration to foster Team Trust and Performance. The study contributes valuable insights for shaping policies enabling ethical and transparent LLMs usage in education to ensure effectiveness of collaborative learning environments.
Related papers
- Exploring Knowledge Tracing in Tutor-Student Dialogues [53.52699766206808]
We present a first attempt at performing knowledge tracing (KT) in tutor-student dialogues.
We propose methods to identify the knowledge components/skills involved in each dialogue turn.
We then apply a range of KT methods on the resulting labeled data to track student knowledge levels over an entire dialogue.
arXiv Detail & Related papers (2024-09-24T22:31:39Z) - Insights from Social Shaping Theory: The Appropriation of Large Language Models in an Undergraduate Programming Course [0.9718746651638346]
Large language models (LLMs) can generate, debug, and explain code.
Our study explores how students' social perceptions influence their own LLM usage.
arXiv Detail & Related papers (2024-06-10T16:40:14Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
We introduce AlphaLLM for the self-improvements of Large Language Models.
It integrates Monte Carlo Tree Search (MCTS) with LLMs to establish a self-improving loop.
Our experimental results show that AlphaLLM significantly enhances the performance of LLMs without additional annotations.
arXiv Detail & Related papers (2024-04-18T15:21:34Z) - Student Perspectives on Using a Large Language Model (LLM) for an Assignment on Professional Ethics [0.0]
The advent of Large Language Models (LLMs) started a serious discussion among educators on how they would affect curricula, assessments, and students' competencies.
This report presents an assignment within a course on professional competencies, including some related to ethics, that computing master's students need in their careers.
arXiv Detail & Related papers (2024-04-09T09:03:47Z) - The Strong Pull of Prior Knowledge in Large Language Models and Its Impact on Emotion Recognition [74.04775677110179]
In-context Learning (ICL) has emerged as a powerful paradigm for performing natural language tasks with Large Language Models (LLM)
We show that LLMs have strong yet inconsistent priors in emotion recognition that ossify their predictions.
Our results suggest that caution is needed when using ICL with larger LLMs for affect-centered tasks outside their pre-training domain.
arXiv Detail & Related papers (2024-03-25T19:07:32Z) - Rethinking the Roles of Large Language Models in Chinese Grammatical
Error Correction [62.409807640887834]
Chinese Grammatical Error Correction (CGEC) aims to correct all potential grammatical errors in the input sentences.
LLMs' performance as correctors on CGEC remains unsatisfactory due to its challenging task focus.
We rethink the roles of LLMs in the CGEC task so that they can be better utilized and explored in CGEC.
arXiv Detail & Related papers (2024-02-18T01:40:34Z) - An Empirical Study on Usage and Perceptions of LLMs in a Software
Engineering Project [1.433758865948252]
Large Language Models (LLMs) represent a leap in artificial intelligence, excelling in tasks using human language(s)
In this paper, we analyze the AI-generated code, prompts used for code generation, and the human intervention levels to integrate the code into the code base.
Our findings suggest that LLMs can play a crucial role in the early stages of software development.
arXiv Detail & Related papers (2024-01-29T14:32:32Z) - Impact of Guidance and Interaction Strategies for LLM Use on Learner Performance and Perception [19.335003380399527]
Large language models (LLMs) offer a promising avenue, with increasing research exploring their educational utility.
Our work highlights the role that teachers can play in shaping LLM-supported learning environments.
arXiv Detail & Related papers (2023-10-13T01:21:52Z) - "With Great Power Comes Great Responsibility!": Student and Instructor
Perspectives on the influence of LLMs on Undergraduate Engineering Education [2.766654468164438]
The rise in popularity of Large Language Models (LLMs) has prompted discussions in academic circles.
This paper conducts surveys and interviews within undergraduate engineering universities in India.
Using 1306 survey responses among students, 112 student interviews, and 27 instructor interviews, this paper offers insights into the current usage patterns.
arXiv Detail & Related papers (2023-09-19T15:29:12Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Aligning Large Language Models with Human: A Survey [53.6014921995006]
Large Language Models (LLMs) trained on extensive textual corpora have emerged as leading solutions for a broad array of Natural Language Processing (NLP) tasks.
Despite their notable performance, these models are prone to certain limitations such as misunderstanding human instructions, generating potentially biased content, or factually incorrect information.
This survey presents a comprehensive overview of these alignment technologies, including the following aspects.
arXiv Detail & Related papers (2023-07-24T17:44:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.