論文の概要: Intelligent Tutoring System: Experience of Linking Software Engineering
and Programming Teaching
- arxiv url: http://arxiv.org/abs/2310.05472v2
- Date: Fri, 13 Oct 2023 06:51:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-16 16:33:32.115153
- Title: Intelligent Tutoring System: Experience of Linking Software Engineering
and Programming Teaching
- Title(参考訳): Intelligent Tutoring System: ソフトウェア工学とプログラミング教育をリンクした経験
- Authors: Zhiyu Fan, Yannic Noller, Ashish Dandekar, Abhik Roychoudhury
- Abstract要約: 自動グレードを処理する既存のシステムは、主にテストケースの実行の自動化に焦点を当てている。
我々は、自動フィードバックとグレーディングを提供するインテリジェントなチューリングシステムを構築しました。
- 参考スコア(独自算出の注目度): 11.732008724228798
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing number of computer science students pushes lecturers and
tutors of first-year programming courses to their limits to provide
high-quality feedback to the students. Existing systems that handle automated
grading primarily focus on the automation of test case executions in the
context of programming assignments. However, they cannot provide customized
feedback about the students' errors, and hence, cannot replace the help of
tutors. While recent research works in the area of automated grading and
feedback generation address this issue by using automated repair techniques, so
far, to the best of our knowledge, there has been no real-world deployment of
such techniques. Based on the research advances in recent years, we have built
an intelligent tutoring system that has the capability of providing automated
feedback and grading. Furthermore, we designed a Software Engineering course
that guides third-year undergraduate students in incrementally developing such
a system over the coming years. Each year, students will make contributions
that improve the current implementation, while at the same time, we can deploy
the current system for usage by first year students. This paper describes our
teaching concept, the intelligent tutoring system architecture, and our
experience with the stakeholders. This software engineering project for the
students has the key advantage that the users of the system are available
in-house (i.e., students, tutors, and lecturers from the first-year programming
courses). This helps organize requirements engineering sessions and builds
awareness about their contribution to a "to be deployed" software project. In
this multi-year teaching effort, we have incrementally built a tutoring system
that can be used in first-year programming courses. Further, it represents a
platform that can integrate the latest research results in APR for education.
- Abstract(参考訳): コンピュータサイエンスの学生の増加は、学生に高品質なフィードバックを提供するために、初年のプログラミングコースの講師や講師をその限界まで押し付けている。
自動グレーディングを処理する既存のシステムは、主にプログラミングの割り当てのコンテキストにおけるテストケースの実行の自動化に焦点を当てている。
しかし、学生の誤りに関するカスタマイズされたフィードバックは提供できないため、教師の助けに取って代わることはできない。
近年, 自動グルーピングとフィードバック生成の分野では, 自動修理技術を用いてこの問題に対処する研究が行われているが, これまでのところ, 我々の知る限りでは, 実際の展開は行われていない。
近年の研究成果を踏まえて,自動フィードバックと採点機能を備えたインテリジェントな指導システムを構築した。
さらに,3年制の大学生を対象に,今後数年間で段階的なシステム開発を指導するソフトウェア工学コースを設計した。
毎年,学生は,現在の実施を改善するための貢献をすると同時に,初年度までに現在のシステムをデプロイすることができる。
本稿では,教育概念,知的指導システムアーキテクチャ,利害関係者との体験について述べる。
学生のためのこのソフトウェアエンジニアリングプロジェクトは、システム利用者が社内で利用可能である(最初のプログラミングコースの学生、家庭教師、講師など)という重要な利点を持っている。
これにより、要件エンジニアリングセッションの組織化や、“デプロイする”ソフトウェアプロジェクトへの貢献に対する意識の構築を支援します。
この多年制の授業では、初年度のプログラミングコースで利用できるチューリングシステムを段階的に構築した。
さらに、最新の研究成果を教育のためのAPRに統合できるプラットフォームを代表している。
関連論文リスト
- WIP: A Unit Testing Framework for Self-Guided Personalized Online Robotics Learning [3.613641107321095]
本稿では,授業ワークフローに統合しながら,単体テストのためのシステムを構築することに焦点を当てる。
フレームワークのパーソナライズされた学生中心のアプローチに合わせて、この方法は学生がプログラミング作業を簡単に修正し、デバッグできるようにする。
単体テストを含むコースワークフローは、学習環境を強化し、学生が自己指導型でロボットをプログラムする方法を学習できるように、よりインタラクティブにする。
論文 参考訳(メタデータ) (2024-05-18T00:56:46Z) - Bridging Gaps, Building Futures: Advancing Software Developer Diversity and Inclusion Through Future-Oriented Research [50.545824691484796]
我々はSEの多様性と包摂性に関する課題と解決策について、SE研究者や実践者から知見を提示する。
我々は,将来的なユートピアやディストピアのビジョンを共有し,今後の研究の方向性とアカデミックや産業への示唆を提供する。
論文 参考訳(メタデータ) (2024-04-10T16:18:11Z) - Automated Computer Program Evaluation and Projects -- Our Experiences [0.0]
ツールの作り方や、コンピュータサイエンスのコース用にカスタマイズした方法について詳述する。
私たちの経験に基づいて、これらのツールを効果的な学習に利用するための洞察も提供しています。
論文 参考訳(メタデータ) (2024-04-06T06:42:58Z) - Charting a Path to Efficient Onboarding: The Role of Software
Visualization [49.1574468325115]
本研究は,ソフトウェアビジュアライゼーションツールを用いたマネージャ,リーダ,開発者の親しみやすさを探求することを目的としている。
本手法は, 質問紙調査と半構造化面接を用いて, 実践者から収集したデータの量的, 質的分析を取り入れた。
論文 参考訳(メタデータ) (2024-01-17T21:30:45Z) - Building an Effective Automated Assessment System for C/C++ Introductory
Programming Courses in ODL Environment [0.0]
学生の作業を評価する従来の方法は、時間と労力の両面で不十分になってきている。
遠隔教育環境では、多くの家庭教師を雇うための重厚な報酬の観点からも、こうした評価がさらに困難になる。
私たちは、効果的な自動評価システムを構築するのに必要な、さまざまなコンポーネントを特定します。
論文 参考訳(メタデータ) (2022-05-24T09:20:43Z) - Lifelong Learning Metrics [63.8376359764052]
DARPA Lifelong Learning Machines (L2M) プログラムは、人工知能(AI)システムの進歩を目指している。
本論文は、生涯学習シナリオを実行するエージェントのパフォーマンスの構築と特徴付けのためのフォーマリズムを概説する。
論文 参考訳(メタデータ) (2022-01-20T16:29:14Z) - An Analysis of Programming Course Evaluations Before and After the
Introduction of an Autograder [1.329950749508442]
本稿では,最近自己評価を導入した基礎的コンピュータ科学コースの標準化された大学評価アンケートに対する回答について検討する。
我々は,教師と生徒の交流の改善,コースの質の向上,学習の成功の向上,時間の短縮,難易度の向上など,データに大きな変化をもたらした可能性について仮説を立てた。
オートグレーダ技術は、プログラミングコースにおける生徒の満足度を向上させるための教育方法として検証することができる。
論文 参考訳(メタデータ) (2021-10-28T14:09:44Z) - Using Machine Learning to Predict Engineering Technology Students'
Success with Computer Aided Design [50.591267188664666]
機械学習技術と組み合わせたデータによって、特定の学生がデザインタスクでどれだけうまく機能するかを予測する方法を示す。
初期設計シーケンスアクションを用いたモデルは,特に予測に有用であることが判明した。
これらのモデルをさらに改善することで、事前の予測が得られ、学生のフィードバックがより早く得られるようになり、学習が向上する可能性がある。
論文 参考訳(メタデータ) (2021-08-12T20:24:54Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
本稿では,フィードバックを数発の分類として提供するという課題について考察する。
メタラーナーは、インストラクターによるいくつかの例から、新しいプログラミング質問に関する学生のコードにフィードバックを与えるように適応します。
本手法は,第1段階の大学が提供したプログラムコースにおいて,16,000名の学生試験ソリューションに対するフィードバックの提供に成功している。
論文 参考訳(メタデータ) (2021-07-23T22:41:28Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
ソフトウェア開発業界は、現代のソフトウェアシステムを高度にインテリジェントで自己学習システムに移行するために、機械学習を急速に採用している。
ソフトウェアエンジニアリングライフサイクルの段階にわたって機械学習の採用について、現状を探求する包括的な研究は存在しない。
本研究は,機械学習によるソフトウェア工学(MLSE)分類を,ソフトウェア工学ライフサイクルのさまざまな段階に適用性に応じて,最先端の機械学習技術に分類するものである。
論文 参考訳(メタデータ) (2020-05-27T11:56:56Z) - Securing Bring-Your-Own-Device (BYOD) Programming Exams [1.9164932573056916]
従来のペンと紙の試験は、現代の大学プログラミングコースでは不十分である。
多くの機関は、専用のコンピュータラボでアセスメントを実行するためのリソースやスペースを欠いている。
これにより、BYOD( bring-your-own-device)試験フォーマットの開発が動機となっている。
論文 参考訳(メタデータ) (2020-01-12T15:01:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。