Little is Enough: Improving Privacy by Sharing Labels in Federated Semi-Supervised Learning
- URL: http://arxiv.org/abs/2310.05696v3
- Date: Thu, 23 May 2024 11:16:54 GMT
- Title: Little is Enough: Improving Privacy by Sharing Labels in Federated Semi-Supervised Learning
- Authors: Amr Abourayya, Jens Kleesiek, Kanishka Rao, Erman Ayday, Bharat Rao, Geoff Webb, Michael Kamp,
- Abstract summary: In many critical applications, sensitive data is inherently distributed and cannot be centralized due to privacy concerns.
Most of these approaches either share local model parameters, soft predictions on a public dataset, or a combination of both.
This, however, still discloses private information and restricts local models to those that lend themselves to training via gradient-based methods.
We propose to share only hard labels on a public unlabeled dataset, and use a consensus over the shared labels as a pseudo-labeling to be used by clients.
- Score: 10.972006295280636
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In many critical applications, sensitive data is inherently distributed and cannot be centralized due to privacy concerns. A wide range of federated learning approaches have been proposed in the literature to train models locally at each client without sharing their sensitive local data. Most of these approaches either share local model parameters, soft predictions on a public dataset, or a combination of both. This, however, still discloses private information and restricts local models to those that lend themselves to training via gradient-based methods. To reduce the amount of shared information, we propose to share only hard labels on a public unlabeled dataset, and use a consensus over the shared labels as a pseudo-labeling to be used by clients. The resulting federated co-training approach empirically improves privacy substantially, without compromising on model quality. At the same time, it allows us to use local models that do not lend themselves to the parameter aggregation used in federated learning, such as (gradient boosted) decision trees, rule ensembles, and random forests.
Related papers
- Proximity-based Self-Federated Learning [1.0066310107046081]
This paper introduces a novel, fully-distributed federated learning strategy called proximity-based self-federated learning.
Unlike traditional algorithms, our approach encourages clients to share and adjust their models with neighbouring nodes based on geographic proximity and model accuracy.
arXiv Detail & Related papers (2024-07-17T08:44:45Z) - Federated Learning with Only Positive Labels by Exploring Label Correlations [78.59613150221597]
Federated learning aims to collaboratively learn a model by using the data from multiple users under privacy constraints.
In this paper, we study the multi-label classification problem under the federated learning setting.
We propose a novel and generic method termed Federated Averaging by exploring Label Correlations (FedALC)
arXiv Detail & Related papers (2024-04-24T02:22:50Z) - Advancing Personalized Federated Learning: Group Privacy, Fairness, and
Beyond [6.731000738818571]
Federated learning (FL) is a framework for training machine learning models in a distributed and collaborative manner.
In this paper, we address the triadic interaction among personalization, privacy guarantees, and fairness attained by models trained within the FL framework.
A method is put forth that introduces group privacy assurances through the utilization of $d$-privacy.
arXiv Detail & Related papers (2023-09-01T12:20:19Z) - Preserving Privacy in Federated Learning with Ensemble Cross-Domain
Knowledge Distillation [22.151404603413752]
Federated Learning (FL) is a machine learning paradigm where local nodes collaboratively train a central model.
Existing FL methods typically share model parameters or employ co-distillation to address the issue of unbalanced data distribution.
We develop a privacy preserving and communication efficient method in a FL framework with one-shot offline knowledge distillation.
arXiv Detail & Related papers (2022-09-10T05:20:31Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
We show that coordinating local learning with private centralized learning yields a generically useful and improved tradeoff between accuracy and privacy.
We illustrate our theoretical results with experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2022-02-10T20:44:44Z) - Federated Learning from Small Datasets [48.879172201462445]
Federated learning allows multiple parties to collaboratively train a joint model without sharing local data.
We propose a novel approach that intertwines model aggregations with permutations of local models.
The permutations expose each local model to a daisy chain of local datasets resulting in more efficient training in data-sparse domains.
arXiv Detail & Related papers (2021-10-07T13:49:23Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
In domains where data are sensitive or private, there is great value in methods that can learn in a distributed manner without the data ever leaving the local devices.
We propose Weight Anonymized Factorization for Federated Learning (WAFFLe), an approach that combines the Indian Buffet Process with a shared dictionary of weight factors for neural networks.
arXiv Detail & Related papers (2020-08-13T04:26:31Z) - Decentralised Learning from Independent Multi-Domain Labels for Person
Re-Identification [69.29602103582782]
Deep learning has been successful for many computer vision tasks due to the availability of shared and centralised large-scale training data.
However, increasing awareness of privacy concerns poses new challenges to deep learning, especially for person re-identification (Re-ID)
We propose a novel paradigm called Federated Person Re-Identification (FedReID) to construct a generalisable global model (a central server) by simultaneously learning with multiple privacy-preserved local models (local clients)
This client-server collaborative learning process is iteratively performed under privacy control, enabling FedReID to realise decentralised learning without sharing distributed data nor collecting any
arXiv Detail & Related papers (2020-06-07T13:32:33Z) - Multi-Center Federated Learning [62.57229809407692]
This paper proposes a novel multi-center aggregation mechanism for federated learning.
It learns multiple global models from the non-IID user data and simultaneously derives the optimal matching between users and centers.
Our experimental results on benchmark datasets show that our method outperforms several popular federated learning methods.
arXiv Detail & Related papers (2020-05-03T09:14:31Z) - Federating Recommendations Using Differentially Private Prototypes [16.29544153550663]
We propose a new federated approach to learning global and local private models for recommendation without collecting raw data.
By requiring only two rounds of communication, we both reduce the communication costs and avoid the excessive privacy loss.
We show local adaptation of the global model allows our method to outperform centralized matrix-factorization-based recommender system models.
arXiv Detail & Related papers (2020-03-01T22:21:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.