Prepotential Approach: a unified approach to exactly, quasi-exactly, and rationally extended solvable quantal systems
- URL: http://arxiv.org/abs/2310.14272v2
- Date: Mon, 22 Apr 2024 16:20:44 GMT
- Title: Prepotential Approach: a unified approach to exactly, quasi-exactly, and rationally extended solvable quantal systems
- Authors: Choon-Lin Ho,
- Abstract summary: We give a brief overview of a simple and unified way, called the prepotential approach.
It treats both exact and quasi-exact solvabilities of the one-dimensional Schr"odinger equation.
We illustrate the approach by several paradigmatic examples of Hermitian and non-Hermitian Hamiltonians with real energies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We give a brief overview of a simple and unified way, called the prepotential approach, to treat both exact and quasi-exact solvabilities of the one-dimensional Schr\"odinger equation. It is based on the prepotential together with Bethe ansatz equations. Unlike the the supersymmetric method for the exactly-solvable systems and the Lie-algebraic approach for the quasi-exactly solvable problems, this approach does not require any knowledge of the underlying symmetry of the system. It treats both quasi-exact and exact solvabilities on the same footing. In this approach the system is completely defined by the choice of two polynomials and a set of Bethe ansatz equations. The potential, the change of variables as well as the eigenfunctions and eigenvalues are determined in the same process. We illustrate the approach by several paradigmatic examples of Hermitian and non-Hermitian Hamiltonians with real energies. Hermitian systems with complex energies, called the quasinormal modes, are also presented. Extension of the approach to the newly discovered rationally extended models is briefly discussed.
Related papers
- Generalized symmetry in non-Hermitian systems [1.124958340749622]
There is a lack of consensus in the mathematical formulation of non-Hermitian quantum mechanics.
Different methodologies are used to study non-Hermitian dynamics.
This study lays the groundwork for further exploration of non-Hermitian Hamiltonians.
arXiv Detail & Related papers (2024-06-08T09:20:30Z) - Certifying ground-state properties of quantum many-body systems [4.377012041420585]
We show how to derive certifiable bounds on the value of any observable in the ground state.
We exploit the symmetries and sparsity of the considered systems to reach sizes of hundreds of particles.
arXiv Detail & Related papers (2023-10-09T16:40:19Z) - Bethe ansatz solutions and hidden $sl(2)$ algebraic structure for a
class of quasi-exactly solvable systems [0.638421840998693]
We revisit a class of models for which the odd solutions were largely missed previously in the literature.
We present a systematic and unified treatment for the odd and even sectors of these models.
We also make progress in the analysis of solutions to the Bethe ansatz equations in the spaces of model parameters.
arXiv Detail & Related papers (2023-09-21T02:04:44Z) - Exact solution of the Bose Hubbard model with unidirectional hopping [4.430341888774933]
A one-dimensional Bose Hubbard model with unidirectional hopping is shown to be exactly solvable.
We prove the integrability of the model and derive the Bethe ansatz equations.
The exact eigenvalue spectrum can be obtained by solving these equations.
arXiv Detail & Related papers (2023-04-30T09:50:51Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - SUSY-Nonrelativistic Quantum Eigenspectral Energy Analysis for
Squared-Type Trigonometric Potentials Through Nikiforov-Uvarov Formalism [0.0]
We presentExplicit and analytical bound-state solutions of the Schrodinger equation for squared-form trigonometric potentials within the framework of supersymmetric quantum mechanics (SUSYQM)
It is remarkable to note that, when examined parametrically, they are of reliable and applicable forms concerning the mathematical treatment of various physical quantum systems prescribed in relativistic or nonrelativistic contexts.
arXiv Detail & Related papers (2022-08-24T14:49:31Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
We propose the combination of a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression.
We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty.
arXiv Detail & Related papers (2021-12-10T11:09:29Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - A Discrete Variational Derivation of Accelerated Methods in Optimization [68.8204255655161]
We introduce variational which allow us to derive different methods for optimization.
We derive two families of optimization methods in one-to-one correspondence.
The preservation of symplecticity of autonomous systems occurs here solely on the fibers.
arXiv Detail & Related papers (2021-06-04T20:21:53Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.