論文の概要: Machine Learning Quantum Systems with Magnetic p-bits
- arxiv url: http://arxiv.org/abs/2310.06679v1
- Date: Tue, 10 Oct 2023 14:54:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-11 14:56:36.609632
- Title: Machine Learning Quantum Systems with Magnetic p-bits
- Title(参考訳): 磁気pビットを用いた機械学習量子システム
- Authors: Shuvro Chowdhury and Kerem Y. Camsari
- Abstract要約: ムーアの法則の減速は、人工知能(AI)アルゴリズムの計算ワークロードが急上昇し続けるにつれ、危機に繋がった。
スケーラブルでエネルギー効率のよいハードウェアは、AIアルゴリズムやアプリケーションのユニークな要件に合わせて緊急に必要である。
pビットによる確率計算は、スケーラブルでドメイン固有でエネルギー効率の良い計算パラダイムとして登場した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The slowing down of Moore's Law has led to a crisis as the computing
workloads of Artificial Intelligence (AI) algorithms continue skyrocketing.
There is an urgent need for scalable and energy-efficient hardware catering to
the unique requirements of AI algorithms and applications. In this environment,
probabilistic computing with p-bits emerged as a scalable, domain-specific, and
energy-efficient computing paradigm, particularly useful for probabilistic
applications and algorithms. In particular, spintronic devices such as
stochastic magnetic tunnel junctions (sMTJ) show great promise in designing
integrated p-computers. Here, we examine how a scalable probabilistic computer
with such magnetic p-bits can be useful for an emerging field combining machine
learning and quantum physics.
- Abstract(参考訳): ムーアの法則の減速は、人工知能(AI)アルゴリズムの計算ワークロードが急上昇し続けるにつれ、危機に繋がった。
AIアルゴリズムとアプリケーションのユニークな要件に合わせて、スケーラブルでエネルギー効率のよいハードウェアが緊急に必要である。
この環境では、pビットを用いた確率計算はスケーラブルでドメイン固有でエネルギー効率のよい計算パラダイムとして登場し、特に確率的アプリケーションやアルゴリズムに有用であった。
特に、確率磁気トンネル接合(sMTJ)のようなスピントロニクスデバイスは、統合されたpコンピュータを設計する上で非常に有望である。
本稿では、このような磁気pビットを持つスケーラブルな確率コンピュータが、機械学習と量子物理学を組み合わせた新興分野にどのように役立つかを検討する。
関連論文リスト
- Generative AI-enabled Quantum Computing Networks and Intelligent
Resource Allocation [80.78352800340032]
量子コンピューティングネットワークは、大規模な生成AI計算タスクと高度な量子アルゴリズムを実行する。
量子コンピューティングネットワークにおける効率的なリソース割り当ては、量子ビットの可変性とネットワークの複雑さのために重要な課題である。
我々は、生成学習から量子機械学習まで、最先端強化学習(RL)アルゴリズムを導入し、最適な量子リソース割り当てを行う。
論文 参考訳(メタデータ) (2024-01-13T17:16:38Z) - Quantum-Assisted Simulation: A Framework for Developing Machine Learning Models in Quantum Computing [0.0]
本稿では、量子コンピューティングの歴史を調査し、既存のQMLアルゴリズムを検証し、QMLアルゴリズムのシミュレーションを作成するための簡易な手順を提案する。
従来の機械学習と量子機械学習の両方のアプローチを用いて、データセット上でシミュレーションを行う。
論文 参考訳(メタデータ) (2023-11-17T07:33:42Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - A full-stack view of probabilistic computing with p-bits: devices,
architectures and algorithms [0.014319921806060482]
pビットを用いた確率計算のフルスタックレビューを提供する。
pビットはエネルギー効率のよい確率システムを構築するのに使用できると我々は主張する。
我々は、機械学習からAIまで、確率的コンピュータの主な応用について概説する。
論文 参考訳(メタデータ) (2023-02-13T15:36:07Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Low-rank tensor decompositions of quantum circuits [14.531461873576449]
我々はMPOを用いて量子状態、量子ゲート、量子回路全体を低ランクテンソルとして表現する方法を示す。
これにより、古典コンピュータ上の複雑な量子回路の解析とシミュレーションが可能になる。
論文 参考訳(メタデータ) (2022-05-19T22:09:15Z) - Neuromorphic scaling advantages for energy-efficient random walk
computation [0.28144129864580447]
ニューロモルフィックコンピューティングは、人間のハードウェアで脳の計算構造とアーキテクチャを再現することを目的としている。
スパイキングニューロモルフィックアーキテクチャの高次並列性と構成性は、離散時間チェーンを介してランダムウォークを実装するのに適していることを示す。
NMCプラットフォームは十分な規模で,高性能コンピューティングプラットフォームのエネルギー需要を大幅に削減できることがわかった。
論文 参考訳(メタデータ) (2021-07-27T19:44:33Z) - Quantum Computing for Artificial Intelligence Based Mobile Network
Optimization [0.0]
本稿では,人工知能における制約満足度問題の概念を用いて,特定の無線アクセスネットワーク最適化問題をモデル化する方法について論じる。
ケーススタディでは、重要なLTE/NR物理ランダムアクセスチャネル構成に関連する自動化ユースケースであるルートシーケンスインデックス(RSI)割り当て問題について論じる。
本稿では,商用モバイルネットワークから取得したデータを用いて構築した2次非制約バイナリ最適化(QUBO)問題としてRSI割り当てを定式化し,クラウドベースの商用量子コンピューティングプラットフォームを用いて解決する。
論文 参考訳(メタデータ) (2021-06-26T01:05:43Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
本研究は、D-Wave 2000Q量子アニール上の分子電子ハミルトニアン固有値-固有ベクトル問題を解くために、一般量子アニール固有解法(QAE)アルゴリズムを実装した。
そこで本研究では,D-Waveハードウェアを用いた各種分子系における基底および電子励起状態の取得について述べる。
論文 参考訳(メタデータ) (2020-09-02T22:46:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。