Interpretable Traffic Event Analysis with Bayesian Networks
- URL: http://arxiv.org/abs/2310.06713v1
- Date: Tue, 10 Oct 2023 15:38:30 GMT
- Title: Interpretable Traffic Event Analysis with Bayesian Networks
- Authors: Tong Yuan, Jian Yang, Zeyi Wen
- Abstract summary: This paper proposes an interpretable framework based on Bayesian Networks for traffic accident prediction.
We design a dataset construction pipeline to feed the traffic data into the framework while retaining the essential traffic data information.
With a concrete case study, our framework can derive a Bayesian Network from a dataset based on the causal relationships between weather and traffic events across the United States.
- Score: 24.029078330299722
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although existing machine learning-based methods for traffic accident
analysis can provide good quality results to downstream tasks, they lack
interpretability which is crucial for this critical problem. This paper
proposes an interpretable framework based on Bayesian Networks for traffic
accident prediction. To enable the ease of interpretability, we design a
dataset construction pipeline to feed the traffic data into the framework while
retaining the essential traffic data information. With a concrete case study,
our framework can derive a Bayesian Network from a dataset based on the causal
relationships between weather and traffic events across the United States.
Consequently, our framework enables the prediction of traffic accidents with
competitive accuracy while examining how the probability of these events
changes under different conditions, thus illustrating transparent relationships
between traffic and weather events. Additionally, the visualization of the
network simplifies the analysis of relationships between different variables,
revealing the primary causes of traffic accidents and ultimately providing a
valuable reference for reducing traffic accidents.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Learning Traffic Crashes as Language: Datasets, Benchmarks, and What-if Causal Analyses [76.59021017301127]
We propose a large-scale traffic crash language dataset, named CrashEvent, summarizing 19,340 real-world crash reports.
We further formulate the crash event feature learning as a novel text reasoning problem and further fine-tune various large language models (LLMs) to predict detailed accident outcomes.
Our experiments results show that our LLM-based approach not only predicts the severity of accidents but also classifies different types of accidents and predicts injury outcomes.
arXiv Detail & Related papers (2024-06-16T03:10:16Z) - Graph Neural Networks for Road Safety Modeling: Datasets and Evaluations
for Accident Analysis [21.02297148118655]
This paper constructs a large-scale dataset of traffic accident records from official reports of various states in the US.
Using this new dataset, we evaluate existing deep-learning methods for predicting the occurrence of accidents on road networks.
Our main finding is that graph neural networks such as GraphSAGE can accurately predict the number of accidents on roads with less than 22% mean absolute error.
arXiv Detail & Related papers (2023-10-31T21:43:10Z) - TAP: A Comprehensive Data Repository for Traffic Accident Prediction in
Road Networks [36.975060335456035]
Existing machine learning approaches tend to focus on predicting traffic accidents in isolation.
To incorporate graph structure information, Graph Neural Networks (GNNs) can be naturally applied.
Applying GNNs to the accident prediction problem faces challenges due to the lack of suitable graph-structured traffic accident datasets.
arXiv Detail & Related papers (2023-04-17T22:18:58Z) - Analyzing and modeling network travel patterns during the Ukraine
invasion using crowd-sourced pervasive traffic data [3.2198211356287674]
In 2022, Ukraine is suffering an invasion which has resulted in acute impacts playing out over time and geography.
This paper examines the impact of the ongoing disruption on traffic behavior using analytics as well as zonal-based network models.
arXiv Detail & Related papers (2022-08-08T17:36:35Z) - STCGAT: Spatial-temporal causal networks for complex urban road traffic
flow prediction [12.223433627287605]
Traffic data are highly nonlinear and have complex spatial correlations between road nodes.
Existing approaches usually use fixed traffic road network topology maps and independent time series modules to capture Spatial-temporal correlations.
We propose a new prediction model which captures the spatial dependence of the traffic network through a Graph Attention Network(GAT) and then analyzes the causal relationship of the traffic data.
arXiv Detail & Related papers (2022-03-21T06:38:34Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
We address the fundamental problem of data scarcity in road traffic accident prediction by training our model on emergency braking events instead of accidents.
We present a prototype implementing a traffic incident prediction model for Germany based on emergency braking data from Mercedes-Benz vehicles.
arXiv Detail & Related papers (2021-02-12T18:17:12Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - Spatio-Temporal Point Processes with Attention for Traffic Congestion
Event Modeling [28.994426283738363]
We present a novel framework for modeling traffic congestion events over road networks.
Using multi-modal data by combining count data from traffic sensors with police reports that report traffic incidents, we aim to capture two types of triggering effect for congestion events.
Current traffic congestion at one location may cause future congestion over the road network, and traffic incidents may cause spread traffic congestion.
arXiv Detail & Related papers (2020-05-15T04:22:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.