論文の概要: Correlated Noise Provably Beats Independent Noise for Differentially
Private Learning
- arxiv url: http://arxiv.org/abs/2310.06771v1
- Date: Tue, 10 Oct 2023 16:48:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-11 14:37:54.269353
- Title: Correlated Noise Provably Beats Independent Noise for Differentially
Private Learning
- Title(参考訳): 離散的個人学習のための相関雑音が独立雑音を打ち負かす
- Authors: Christopher A. Choquette-Choo, Krishnamurthy Dvijotham, Krishna
Pillutla, Arun Ganesh, Thomas Steinke, Abhradeep Thakurta
- Abstract要約: 異なるプライベート学習アルゴリズムは学習プロセスにノイズを注入する。
問題パラメータの関数として,バニラ-SGDの相関ノイズがいかに改善するかを示す。
- 参考スコア(独自算出の注目度): 27.35337701794653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differentially private learning algorithms inject noise into the learning
process. While the most common private learning algorithm, DP-SGD, adds
independent Gaussian noise in each iteration, recent work on matrix
factorization mechanisms has shown empirically that introducing correlations in
the noise can greatly improve their utility. We characterize the asymptotic
learning utility for any choice of the correlation function, giving precise
analytical bounds for linear regression and as the solution to a convex program
for general convex functions. We show, using these bounds, how correlated noise
provably improves upon vanilla DP-SGD as a function of problem parameters such
as the effective dimension and condition number. Moreover, our analytical
expression for the near-optimal correlation function circumvents the cubic
complexity of the semi-definite program used to optimize the noise correlation
matrix in previous work. We validate our theory with experiments on private
deep learning. Our work matches or outperforms prior work while being efficient
both in terms of compute and memory.
- Abstract(参考訳): 異なるプライベート学習アルゴリズムは学習プロセスにノイズを注入する。
最も一般的なプライベート学習アルゴリズムであるDP-SGDは、各イテレーションに独立なガウス雑音を付加するが、近年の行列分解機構の研究は、ノイズに相関を導入することにより、その有用性を大幅に向上することを示した。
相関関数の任意の選択に対して漸近的学習ユーティリティを特徴付け、線形回帰の正確な解析的境界を与え、一般凸関数に対する凸プログラムの解として提供する。
これらの境界を用いて,実効次元や条件数などの問題パラメータの関数として,バニラDP-SGDの相関ノイズが向上することを示す。
さらに, 雑音相関行列の最適化に用いる半定値プログラムの立方体複雑性を回避し, 近最適相関関数の解析式を導出する。
我々は私的深層学習の実験で理論を検証する。
私たちの作業は、計算とメモリの両面で効率的でありながら、以前の作業にマッチするか、上回っています。
関連論文リスト
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
凸最適化問題を解くための新しい勾配のないアルゴリズムを提案する。
このような問題は医学、物理学、機械学習で発生する。
両種類の雑音下で提案アルゴリズムの収束保証を行う。
論文 参考訳(メタデータ) (2024-11-21T10:26:17Z) - Physics-informed AI and ML-based sparse system identification algorithm for discovery of PDE's representing nonlinear dynamic systems [0.0]
提案手法は, 3次元, 4次, 剛性方程式を含む, 様々な雑音レベルの微分方程式を探索する。
パラメータ推定は変動係数が小さい真の値に正確に収束し、ノイズに頑健性を示す。
論文 参考訳(メタデータ) (2024-10-13T21:48:51Z) - Computationally Efficient RL under Linear Bellman Completeness for Deterministic Dynamics [39.07258580928359]
線形ベルマン完全設定に対する計算的および統計的に効率的な強化学習アルゴリズムについて検討する。
この設定では線形関数近似を用いて値関数をキャプチャし、線形マルコフ決定プロセス(MDP)や線形二次レギュレータ(LQR)のような既存のモデルを統一する。
我々の研究は、線形ベルマン完全設定のための計算効率の良いアルゴリズムを提供し、大きなアクション空間、ランダムな初期状態、ランダムな報酬を持つMDPに対して機能するが、決定論的となる基礎となる力学に依存している。
論文 参考訳(メタデータ) (2024-06-17T17:52:38Z) - Information limits and Thouless-Anderson-Palmer equations for spiked matrix models with structured noise [19.496063739638924]
構造スパイクモデルに対するベイズ推定の飽和問題を考える。
適応的なThouless-Anderson-Palmer方程式の理論にインスパイアされた効率的なアルゴリズムを用いて、統計的限界を予測する方法を示す。
論文 参考訳(メタデータ) (2024-05-31T16:38:35Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
実データと人工雑音のロジスティックな損失として目的を定式化することにより, ノイズコントラスト推定(NCE)を提案する。
本稿では,非正規化モデルの負の対数類似度を最適化するための直接的アプローチについて検討する。
論文 参考訳(メタデータ) (2023-06-13T01:18:16Z) - Gradient Descent with Linearly Correlated Noise: Theory and Applications
to Differential Privacy [17.81999485513265]
線形相関雑音下での勾配降下について検討する。
我々はこの結果を用いて、微分プライベート最適化のための新しい効果的な行列分解法を開発した。
論文 参考訳(メタデータ) (2023-02-02T23:32:24Z) - Optimizing Information-theoretical Generalization Bounds via Anisotropic
Noise in SGLD [73.55632827932101]
SGLDにおけるノイズ構造を操作することにより,情報理論の一般化を最適化する。
低経験的リスクを保証するために制約を課すことで、最適なノイズ共分散が期待される勾配共分散の平方根であることを証明する。
論文 参考訳(メタデータ) (2021-10-26T15:02:27Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - Plug-And-Play Learned Gaussian-mixture Approximate Message Passing [71.74028918819046]
そこで本研究では,従来のi.i.d.ソースに適した圧縮圧縮センシング(CS)リカバリアルゴリズムを提案する。
我々のアルゴリズムは、Borgerdingの学習AMP(LAMP)に基づいて構築されるが、アルゴリズムに普遍的な復調関数を採用することにより、それを大幅に改善する。
数値評価により,L-GM-AMPアルゴリズムは事前の知識を必要とせず,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-11-18T16:40:45Z) - Fast Reinforcement Learning with Incremental Gaussian Mixture Models [0.0]
Incrmental Gaussian Mixture Network (IGMN)と呼ばれる単一パスから学習可能なオンラインおよびインクリメンタルなアルゴリズムが、結合状態とQ値空間のためのサンプル効率関数近似器として採用された。
IGMN関数近似器の使用は、勾配降下法で訓練された従来のニューラルネットワークと比較して、強化学習に重要な利点をもたらすことが観察された。
論文 参考訳(メタデータ) (2020-11-02T03:18:15Z) - Learning with Differentiable Perturbed Optimizers [54.351317101356614]
本稿では,操作を微分可能で局所的に一定ではない操作に変換する手法を提案する。
提案手法は摂動に依拠し,既存の解法とともに容易に利用することができる。
本稿では,この枠組みが,構造化予測において発達した損失の族とどのように結びつくかを示し,学習課題におけるそれらの使用に関する理論的保証を与える。
論文 参考訳(メタデータ) (2020-02-20T11:11:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。