Enhancing Predictive Capabilities in Data-Driven Dynamical Modeling with Automatic Differentiation: Koopman and Neural ODE Approaches
- URL: http://arxiv.org/abs/2310.06790v2
- Date: Sun, 17 Mar 2024 20:38:27 GMT
- Title: Enhancing Predictive Capabilities in Data-Driven Dynamical Modeling with Automatic Differentiation: Koopman and Neural ODE Approaches
- Authors: C. Ricardo Constante-Amores, Alec J. Linot, Michael D. Graham,
- Abstract summary: Data-driven approximations of the Koopman operator are promising for predicting the time evolution of systems characterized by complex dynamics.
Here we present a modification of EDMD-DL that concurrently determines both the dictionary of observables and the corresponding approximation of the Koopman operator.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven approximations of the Koopman operator are promising for predicting the time evolution of systems characterized by complex dynamics. Among these methods, the approach known as extended dynamic mode decomposition with dictionary learning (EDMD-DL) has garnered significant attention. Here we present a modification of EDMD-DL that concurrently determines both the dictionary of observables and the corresponding approximation of the Koopman operator. This innovation leverages automatic differentiation to facilitate gradient descent computations through the pseudoinverse. We also address the performance of several alternative methodologies. We assess a 'pure' Koopman approach, which involves the direct time-integration of a linear, high-dimensional system governing the dynamics within the space of observables. Additionally, we explore a modified approach where the system alternates between spaces of states and observables at each time step -- this approach no longer satisfies the linearity of the true Koopman operator representation. For further comparisons, we also apply a state space approach (neural ODEs). We consider systems encompassing two and three-dimensional ordinary differential equation systems featuring steady, oscillatory, and chaotic attractors, as well as partial differential equations exhibiting increasingly complex and intricate behaviors. Our framework significantly outperforms EDMD-DL. Furthermore, the state space approach offers superior performance compared to the 'pure' Koopman approach where the entire time evolution occurs in the space of observables. When the temporal evolution of the Koopman approach alternates between states and observables at each time step, however, its predictions become comparable to those of the state space approach.
Related papers
- On the relationship between Koopman operator approximations and neural ordinary differential equations for data-driven time-evolution predictions [0.0]
We show that extended dynamic mode decomposition with dictionary learning (EDMD-DL) is equivalent to a neural network representation of the nonlinear discrete-time flow map on the state space.
We implement several variations of neural ordinary differential equations (ODEs) and EDMD-DL, developed by combining different aspects of their respective model structures and training procedures.
We evaluate these methods using numerical experiments on chaotic dynamics in the Lorenz system and a nine-mode model of turbulent shear flow.
arXiv Detail & Related papers (2024-11-20T00:18:46Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Mori-Zwanzig latent space Koopman closure for nonlinear autoencoder [0.0]
This study presents a novel approach termed Mori-Zwanzig autoencoder (MZ-AE) to robustly approximate the Koopman operator in low-dimensional spaces.
The proposed method leverages a nonlinear autoencoder to extract key observables for approximating a finite invariant Koopman subspace.
It provides a low dimensional approximation for Kuramoto-Sivashinsky with promising short-term predictability and robust long-term statistical performance.
arXiv Detail & Related papers (2023-10-16T18:22:02Z) - Improving Estimation of the Koopman Operator with Kolmogorov-Smirnov
Indicator Functions [0.0]
Key to a practical success of the approach is the identification of a set of observables which form a good basis in which to expand the slow relaxation modes.
We propose a simple and computationally efficient clustering procedure to infer surrogate observables that form a good basis for slow modes.
We consistently demonstrate that the inferred indicator functions can significantly improve the estimation of the leading eigenvalues of the Koopman operators.
arXiv Detail & Related papers (2023-06-09T15:01:43Z) - Koopa: Learning Non-stationary Time Series Dynamics with Koopman
Predictors [85.22004745984253]
Real-world time series are characterized by intrinsic non-stationarity that poses a principal challenge for deep forecasting models.
We tackle non-stationary time series with modern Koopman theory that fundamentally considers the underlying time-variant dynamics.
We propose Koopa as a novel Koopman forecaster composed of stackable blocks that learn hierarchical dynamics.
arXiv Detail & Related papers (2023-05-30T07:40:27Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
We present a novel method that combines a hyper-network solver with a Fourier Neural Operator architecture.
We test our method on various time evolution PDEs, including nonlinear fluid flows in one, two, and three spatial dimensions.
The results show that the new method improves the learning accuracy at the time point of supervision point, and is able to interpolate and the solutions to any intermediate time.
arXiv Detail & Related papers (2022-07-28T19:59:14Z) - Variational Inference for Continuous-Time Switching Dynamical Systems [29.984955043675157]
We present a model based on an Markov jump process modulating a subordinated diffusion process.
We develop a new continuous-time variational inference algorithm.
We extensively evaluate our algorithm under the model assumption and for real-world examples.
arXiv Detail & Related papers (2021-09-29T15:19:51Z) - Deep Learning Enhanced Dynamic Mode Decomposition [0.0]
We use convolutional autoencoder networks to simultaneously find optimal families of observables.
We also generate both accurate embeddings of the flow into a space of observables and immersions of the observables back into flow coordinates.
This network results in a global transformation of the flow and affords future state prediction via EDMD and the decoder network.
arXiv Detail & Related papers (2021-08-10T03:54:23Z) - Estimating Koopman operators for nonlinear dynamical systems: a
nonparametric approach [77.77696851397539]
The Koopman operator is a mathematical tool that allows for a linear description of non-linear systems.
In this paper we capture their core essence as a dual version of the same framework, incorporating them into the Kernel framework.
We establish a strong link between kernel methods and Koopman operators, leading to the estimation of the latter through Kernel functions.
arXiv Detail & Related papers (2021-03-25T11:08:26Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Forecasting Sequential Data using Consistent Koopman Autoencoders [52.209416711500005]
A new class of physics-based methods related to Koopman theory has been introduced, offering an alternative for processing nonlinear dynamical systems.
We propose a novel Consistent Koopman Autoencoder model which, unlike the majority of existing work, leverages the forward and backward dynamics.
Key to our approach is a new analysis which explores the interplay between consistent dynamics and their associated Koopman operators.
arXiv Detail & Related papers (2020-03-04T18:24:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.