Mori-Zwanzig latent space Koopman closure for nonlinear autoencoder
- URL: http://arxiv.org/abs/2310.10745v2
- Date: Tue, 16 Apr 2024 15:22:04 GMT
- Title: Mori-Zwanzig latent space Koopman closure for nonlinear autoencoder
- Authors: Priyam Gupta, Peter J. Schmid, Denis Sipp, Taraneh Sayadi, Georgios Rigas,
- Abstract summary: This study presents a novel approach termed Mori-Zwanzig autoencoder (MZ-AE) to robustly approximate the Koopman operator in low-dimensional spaces.
The proposed method leverages a nonlinear autoencoder to extract key observables for approximating a finite invariant Koopman subspace.
It provides a low dimensional approximation for Kuramoto-Sivashinsky with promising short-term predictability and robust long-term statistical performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Koopman operator presents an attractive approach to achieve global linearization of nonlinear systems, making it a valuable method for simplifying the understanding of complex dynamics. While data-driven methodologies have exhibited promise in approximating finite Koopman operators, they grapple with various challenges, such as the judicious selection of observables, dimensionality reduction, and the ability to predict complex system behaviors accurately. This study presents a novel approach termed Mori-Zwanzig autoencoder (MZ-AE) to robustly approximate the Koopman operator in low-dimensional spaces. The proposed method leverages a nonlinear autoencoder to extract key observables for approximating a finite invariant Koopman subspace and integrates a non-Markovian correction mechanism using the Mori-Zwanzig formalism. Consequently, this approach yields a closed representation of dynamics within the latent manifold of the nonlinear autoencoder, thereby enhancing the precision and stability of the Koopman operator approximation. Demonstrations showcase the technique's ability to capture regime transitions in the flow around a cylinder. It also provides a low dimensional approximation for Kuramoto-Sivashinsky with promising short-term predictability and robust long-term statistical performance. By bridging the gap between data-driven techniques and the mathematical foundations of Koopman theory, MZ-AE offers a promising avenue for improved understanding and prediction of complex nonlinear dynamics.
Related papers
- A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - Uncertainty Modelling and Robust Observer Synthesis using the Koopman Operator [5.317624228510749]
The Koopman operator allows nonlinear systems to be rewritten as infinite-dimensional linear systems.
A finite-dimensional approximation of the Koopman operator can be identified directly from data.
A population of several dozen motor drives is used to experimentally demonstrate the proposed method.
arXiv Detail & Related papers (2024-10-01T20:31:18Z) - Multiplicative Dynamic Mode Decomposition [4.028503203417233]
We introduce Multiplicative Dynamic Mode Decomposition (MultDMD), which enforces the multiplicative structure inherent in the Koopman operator within its finite-dimensional approximation.
MultDMD presents a structured approach to finite-dimensional approximations and can accurately reflect the spectral properties of the Koopman operator.
We elaborate on the theoretical framework of MultDMD, detailing its formulation, optimization strategy, and convergence properties.
arXiv Detail & Related papers (2024-05-08T18:09:16Z) - Exploiting hidden structures in non-convex games for convergence to Nash
equilibrium [62.88214569402201]
A wide array of modern machine learning applications can be formulated as non-cooperative Nashlibria.
We provide explicit convergence guarantees for both deterministic and deterministic environments.
arXiv Detail & Related papers (2023-12-27T15:21:25Z) - Enhancing Predictive Capabilities in Data-Driven Dynamical Modeling with Automatic Differentiation: Koopman and Neural ODE Approaches [0.0]
Data-driven approximations of the Koopman operator are promising for predicting the time evolution of systems characterized by complex dynamics.
Here we present a modification of EDMD-DL that concurrently determines both the dictionary of observables and the corresponding approximation of the Koopman operator.
arXiv Detail & Related papers (2023-10-10T17:04:21Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - Koopman Kernel Regression [6.116741319526748]
We show that Koopman operator theory offers a beneficial paradigm for characterizing forecasts via linear time-invariant (LTI) ODEs.
We derive a universal Koopman-invariant kernel reproducing Hilbert space (RKHS) that solely spans transformations into LTI dynamical systems.
Our experiments demonstrate superior forecasting performance compared to Koopman operator and sequential data predictors.
arXiv Detail & Related papers (2023-05-25T16:22:22Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
The Dynamic Mode Decomposition has proved to be a very efficient technique to study dynamic data.
The application of this approach becomes problematic if the available data is incomplete because some dimensions of smaller scale either missing or unmeasured.
We consider a first-order approximation of the Mori-Zwanzig decomposition, state the corresponding optimization problem and solve it with the gradient-based optimization method.
arXiv Detail & Related papers (2022-02-23T11:23:59Z) - Estimating Koopman operators for nonlinear dynamical systems: a
nonparametric approach [77.77696851397539]
The Koopman operator is a mathematical tool that allows for a linear description of non-linear systems.
In this paper we capture their core essence as a dual version of the same framework, incorporating them into the Kernel framework.
We establish a strong link between kernel methods and Koopman operators, leading to the estimation of the latter through Kernel functions.
arXiv Detail & Related papers (2021-03-25T11:08:26Z) - Sparsity-promoting algorithms for the discovery of informative Koopman
invariant subspaces [0.0]
We propose a framework based on multi-task feature learning to extract most informative Koopman in subspace.
We show a relationship between the present algorithm, sparsity DMD, and an empirical criterion promoting KDMD.
arXiv Detail & Related papers (2020-02-25T03:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.