論文の概要: Performance Analysis of Various EfficientNet Based U-Net++ Architecture
for Automatic Building Extraction from High Resolution Satellite Images
- arxiv url: http://arxiv.org/abs/2310.06847v1
- Date: Tue, 5 Sep 2023 18:14:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 03:35:26.053187
- Title: Performance Analysis of Various EfficientNet Based U-Net++ Architecture
for Automatic Building Extraction from High Resolution Satellite Images
- Title(参考訳): 高分解能衛星画像からの自動建物抽出のためのu-net++アーキテクチャの性能解析
- Authors: Tareque Bashar Ovi, Nomaiya Bashree, Protik Mukherjee, Shakil
Mosharrof, and Masuma Anjum Parthima
- Abstract要約: ビルディング抽出は高解像度リモートセンシング画像のセマンティックセグメンテーションに大きく依存している。
本研究では,ネットワークバックボーンをベースとした様々なU-Net++を提案する。
実験結果によると,提案モデルは従来の最先端アプローチよりも有意に優れていた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Building extraction is an essential component of study in the science of
remote sensing, and applications for building extraction heavily rely on
semantic segmentation of high-resolution remote sensing imagery. Semantic
information extraction gap constraints in the present deep learning based
approaches, however can result in inadequate segmentation outcomes. To address
this issue and extract buildings with high accuracy, various efficientNet
backbone based U-Net++ has been proposed in this study. The designed network,
based on U-Net, can improve the sensitivity of the model by deep supervision,
voluminous redesigned skip-connections and hence reducing the influence of
irrelevant feature areas in the background. Various effecientNet backbone based
encoders have been employed when training the network to enhance the capacity
of the model to extract more relevant feature. According on the experimental
findings, the suggested model significantly outperforms previous cutting-edge
approaches. Among the 5 efficientNet variation Unet++ based on efficientb4
achieved the best result by scoring mean accuracy of 92.23%, mean iou of
88.32%, and mean precision of 93.2% on publicly available Massachusetts
building dataset and thus showing the promises of the model for automatic
building extraction from high resolution satellite images.
- Abstract(参考訳): 建物抽出はリモートセンシング科学における研究の重要な要素であり、高分解能リモートセンシング画像の意味セグメンテーションに大きく依存する建物抽出のための応用である。
しかし,近年の深層学習における意味情報抽出ギャップの制約は,セグメンテーションの結果が不十分である。
この問題に対処し,高い精度で建物を抽出するために,ネットワークバックボーンに基づく様々なU-Net++が提案されている。
U-Netをベースとした設計されたネットワークは、深い監視によってモデルの感度を向上し、再設計されたスキップ接続により、背景にある無関係な特徴領域の影響を減らすことができる。
ネットワークをトレーニングして、より関連性の高い特徴を抽出する能力を高めるために、さまざまなエフェクトネットバックボーンベースのエンコーダが採用されている。
実験結果によると,提案モデルは従来の切削刃アプローチを大きく上回っている。
効率的なb4に基づく5つの効率の良いネットワーク変動Unet++の中では、平均精度92.23%、平均iou88.32%、マサチューセッツの建築データセットの平均精度93.2%、高解像度衛星画像からの自動ビルディング抽出のモデルが約束されている。
関連論文リスト
- Depth Estimation using Weighted-loss and Transfer Learning [2.428301619698667]
転送学習と最適化された損失関数を用いた深度推定精度の向上のための簡易かつ適応的なアプローチを提案する。
本研究では,移動学習と最適損失関数を用いた深度推定精度向上のための簡易かつ適応的な手法を提案する。
EfficientNetが最も成功したアーキテクチャである。
論文 参考訳(メタデータ) (2024-04-11T12:25:54Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - Building Extraction from Remote Sensing Images via an Uncertainty-Aware
Network [18.365220543556113]
ビルの抽出は、都市計画や都市動態モニタリングなど、多くの応用において重要な役割を担っている。
本稿では,この問題を緩和するために,新規で簡単なUncertainty-Aware Network(UANet)を提案する。
その結果、提案したUANetは、他の最先端アルゴリズムよりも大きなマージンで優れていることが示された。
論文 参考訳(メタデータ) (2023-07-23T12:42:15Z) - SmoothNets: Optimizing CNN architecture design for differentially
private deep learning [69.10072367807095]
DPSGDは、サンプルごとの勾配の切り抜きとノイズ付けを必要とする。
これにより、非プライベートトレーニングと比較してモデルユーティリティが削減される。
SmoothNetと呼ばれる新しいモデルアーキテクチャを蒸留し,DP-SGDトレーニングの課題に対するロバスト性の向上を特徴とした。
論文 参考訳(メタデータ) (2022-05-09T07:51:54Z) - Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation [87.54604263202941]
本稿では,従来の推定値の修正に部分的レイヤを反復的に活用する,小さなディープニューラルネットワークを提案する。
学習したゲーティング基準を用いて、ウェイトシェアリングループから抜け出すかどうかを判断し、モデルにサンプルごとの適応を可能にする。
提案手法は,広く使用されているベンチマークの精度と効率の両面から,最先端の2D/3Dハンドポーズ推定手法より一貫して優れている。
論文 参考訳(メタデータ) (2021-11-11T23:31:34Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - Progressively Guided Alternate Refinement Network for RGB-D Salient
Object Detection [63.18846475183332]
我々は,RGB-Dの高次物体検出のための効率的かつコンパクトなディープネットワークを開発することを目指している。
そこで本研究では,改良のための改良ネットワークを提案する。
我々のモデルは、既存の最先端のアプローチよりも大きなマージンで優れています。
論文 参考訳(メタデータ) (2020-08-17T02:55:06Z) - Road Segmentation for Remote Sensing Images using Adversarial Spatial
Pyramid Networks [28.32775611169636]
合成画像生成と道路分割に構造化領域適応を適用した新しいモデルを提案する。
マルチレベルの特徴マップから学び、特徴のセマンティクスを改善するために、新しいスケールワイズアーキテクチャが導入された。
我々のモデルは、14.89Mパラメータと86.78B FLOPを持つマサチューセッツのデータセット上で、最先端の78.86 IOUを達成し、4倍少ないFLOPを持つが、より高精度(+3.47% IOU)である。
論文 参考訳(メタデータ) (2020-08-10T11:00:19Z) - Learning Robust Feature Representations for Scene Text Detection [0.0]
本稿では、条件付きログを最大化するために、損失から導かれるネットワークアーキテクチャを提案する。
潜伏変数の層を複数の層に拡張することで、ネットワークは大規模に堅牢な機能を学ぶことができる。
実験では,提案アルゴリズムはリコール法と精度の両面で最先端の手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-05-26T01:06:47Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。