DESTINE: Dynamic Goal Queries with Temporal Transductive Alignment for
Trajectory Prediction
- URL: http://arxiv.org/abs/2310.07438v1
- Date: Wed, 11 Oct 2023 12:41:32 GMT
- Title: DESTINE: Dynamic Goal Queries with Temporal Transductive Alignment for
Trajectory Prediction
- Authors: Rezaul Karim, Soheil Mohamad Alizadeh Shabestary, Amir Rasouli
- Abstract summary: We propose Dynamic goal quErieS with temporal Transductive alIgNmEnt (DESTINE) method.
We show that our method achieves state-of-the-art performance on various metrics.
- Score: 8.25651323214656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting temporally consistent road users' trajectories in a multi-agent
setting is a challenging task due to unknown characteristics of agents and
their varying intentions. Besides using semantic map information and modeling
interactions, it is important to build an effective mechanism capable of
reasoning about behaviors at different levels of granularity. To this end, we
propose Dynamic goal quErieS with temporal Transductive alIgNmEnt (DESTINE)
method. Unlike past arts, our approach 1) dynamically predicts agents' goals
irrespective of particular road structures, such as lanes, allowing the method
to produce a more accurate estimation of destinations; 2) achieves map
compliant predictions by generating future trajectories in a coarse-to-fine
fashion, where the coarser predictions at a lower frame rate serve as
intermediate goals; and 3) uses an attention module designed to temporally
align predicted trajectories via masked attention. Using the common Argoverse
benchmark dataset, we show that our method achieves state-of-the-art
performance on various metrics, and further investigate the contributions of
proposed modules via comprehensive ablation studies.
Related papers
- Multi-agent Traffic Prediction via Denoised Endpoint Distribution [23.767783008524678]
Trajectory prediction at high speeds requires historical features and interactions with surrounding entities.
We present the Denoised Distribution model for trajectory prediction.
Our approach significantly reduces model complexity and performance through endpoint information.
arXiv Detail & Related papers (2024-05-11T15:41:32Z) - HPNet: Dynamic Trajectory Forecasting with Historical Prediction Attention [76.37139809114274]
HPNet is a novel dynamic trajectory forecasting method.
We propose a Historical Prediction Attention module to automatically encode the dynamic relationship between successive predictions.
Our code is available at https://github.com/XiaolongTang23/HPNet.
arXiv Detail & Related papers (2024-04-09T14:42:31Z) - Interpretable Long Term Waypoint-Based Trajectory Prediction Model [1.4778851751964937]
We study the impact of adding a long-term goal on the performance of a trajectory prediction framework.
We present an interpretable long term waypoint-driven prediction framework (WayDCM)
arXiv Detail & Related papers (2023-12-11T09:10:22Z) - Bootstrap Motion Forecasting With Self-Consistent Constraints [52.88100002373369]
We present a novel framework to bootstrap Motion forecasting with Self-consistent Constraints.
The motion forecasting task aims at predicting future trajectories of vehicles by incorporating spatial and temporal information from the past.
We show that our proposed scheme consistently improves the prediction performance of several existing methods.
arXiv Detail & Related papers (2022-04-12T14:59:48Z) - LatentFormer: Multi-Agent Transformer-Based Interaction Modeling and
Trajectory Prediction [12.84508682310717]
We propose LatentFormer, a transformer-based model for predicting future vehicle trajectories.
We evaluate the proposed method on the nuScenes benchmark dataset and show that our approach achieves state-of-the-art performance and improves upon trajectory metrics by up to 40%.
arXiv Detail & Related papers (2022-03-03T17:44:58Z) - Trajectory Forecasting from Detection with Uncertainty-Aware Motion
Encoding [121.66374635092097]
Trajectories obtained from object detection and tracking are inevitably noisy.
We propose a trajectory predictor directly based on detection results without relying on explicitly formed trajectories.
arXiv Detail & Related papers (2022-02-03T09:09:56Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
Recent deep learning approaches for trajectory prediction show promising performance.
It remains unclear which features such black-box models actually learn to use for making predictions.
This paper proposes a procedure that quantifies the contributions of different cues to model performance.
arXiv Detail & Related papers (2021-10-11T14:24:15Z) - RAIN: Reinforced Hybrid Attention Inference Network for Motion
Forecasting [34.54878390622877]
We propose a generic motion forecasting framework with dynamic key information selection and ranking based on a hybrid attention mechanism.
The framework is instantiated to handle multi-agent trajectory prediction and human motion forecasting tasks.
We validate the framework on both synthetic simulations and motion forecasting benchmarks in different domains.
arXiv Detail & Related papers (2021-08-03T06:30:30Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
We propose a generic generative neural system for multi-agent trajectory prediction involving heterogeneous agents.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2021-02-18T02:25:35Z) - TNT: Target-driveN Trajectory Prediction [76.21200047185494]
We develop a target-driven trajectory prediction framework for moving agents.
We benchmark it on trajectory prediction of vehicles and pedestrians.
We outperform state-of-the-art on Argoverse Forecasting, INTERACTION, Stanford Drone and an in-house Pedestrian-at-Intersection dataset.
arXiv Detail & Related papers (2020-08-19T06:52:46Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.