論文の概要: Growing Brains: Co-emergence of Anatomical and Functional Modularity in
Recurrent Neural Networks
- arxiv url: http://arxiv.org/abs/2310.07711v1
- Date: Wed, 11 Oct 2023 17:58:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-12 21:18:00.859360
- Title: Growing Brains: Co-emergence of Anatomical and Functional Modularity in
Recurrent Neural Networks
- Title(参考訳): 成長する脳 : リカレントニューラルネットワークにおける解剖学的・機能的モジュラリティの融合
- Authors: Ziming Liu, Mikail Khona, Ila R. Fiete, Max Tegmark
- Abstract要約: 構成タスクで訓練されたリカレントニューラルネットワーク(RNN)は、機能的なモジュラリティを示すことができる。
我々は、脳に触発されたモジュラートレーニングという最近の機械学習手法を、合成認知タスクの集合を解決するためにトレーニングされているネットワークに適用する。
機能的および解剖学的クラスタリングが同時に出現し、機能的に類似したニューロンが空間的局所化および相互接続されるようになる。
- 参考スコア(独自算出の注目度): 18.375521792153112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recurrent neural networks (RNNs) trained on compositional tasks can exhibit
functional modularity, in which neurons can be clustered by activity similarity
and participation in shared computational subtasks. Unlike brains, these RNNs
do not exhibit anatomical modularity, in which functional clustering is
correlated with strong recurrent coupling and spatial localization of
functional clusters. Contrasting with functional modularity, which can be
ephemerally dependent on the input, anatomically modular networks form a robust
substrate for solving the same subtasks in the future. To examine whether it is
possible to grow brain-like anatomical modularity, we apply a recent machine
learning method, brain-inspired modular training (BIMT), to a network being
trained to solve a set of compositional cognitive tasks. We find that
functional and anatomical clustering emerge together, such that functionally
similar neurons also become spatially localized and interconnected. Moreover,
compared to standard $L_1$ or no regularization settings, the model exhibits
superior performance by optimally balancing task performance and network
sparsity. In addition to achieving brain-like organization in RNNs, our
findings also suggest that BIMT holds promise for applications in neuromorphic
computing and enhancing the interpretability of neural network architectures.
- Abstract(参考訳): 構成タスクで訓練されたリカレントニューラルネットワーク(RNN)は機能的なモジュラリティを示し、ニューロンは活動類似性と共有計算サブタスクへの参加によってクラスタ化することができる。
脳とは異なり、これらのRNNは解剖学的モジュラリティを示しておらず、機能的クラスタリングは強い再帰結合と機能的クラスタの空間的局在と相関している。
入力に短命に依存できる機能的モジュラリティとは対照的に、解剖学的にモジュール化されたネットワークは、将来同じサブタスクを解決するためのロバストな基盤を形成する。
脳に似た解剖学的モジュラリティを育成できるかどうかを調べるために、脳にインスパイアされたモジュラートレーニング(bimt)という機械学習手法を、一連の構成認知課題を解決するために訓練されたネットワークに適用する。
機能的および解剖学的クラスタリングが同時に出現し、機能的に類似したニューロンが空間的局所化および相互接続されるようになる。
さらに、標準の$L_1$や非正規化設定と比較すると、タスク性能とネットワーク幅を最適にバランスさせることで、優れたパフォーマンスを示す。
RNNにおける脳に似た組織の実現に加えて、BIMTはニューロモルフィックコンピューティングの応用とニューラルネットワークアーキテクチャの解釈可能性の向上を約束していることも示唆している。
関連論文リスト
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - Spatial embedding promotes a specific form of modularity with low entropy and heterogeneous spectral dynamics [0.0]
空間的に埋め込まれたリカレントニューラルネットワークは、学習よりもネットワークの構造と機能を組み合わせた組織をどのように形成するかを研究するための有望な道を提供する。
我々は,これらの制約を,速度とスパイクニューラルネットワークの両面にわたって,ニューラルウェイトと固有スペクトルのエントロピー測定によって研究することが可能であることを示す。
この作業は、ニューラルネットワークにおける制約付き学習の理解を深め、コーディングスキームやタスクを越えて、同時に構造的および機能的目的に対するソリューションをタンデムで達成する必要がある。
論文 参考訳(メタデータ) (2024-09-26T10:00:05Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Modular Growth of Hierarchical Networks: Efficient, General, and Robust Curriculum Learning [0.0]
与えられた古典的、非モジュラーリカレントニューラルネットワーク(RNN)に対して、等価なモジュラーネットワークが複数のメトリクスにわたってより良い性能を発揮することを示す。
モジュラートポロジによって導入された帰納バイアスは,モジュール内の接続が固定された場合でもネットワークが良好に動作可能であることを示す。
以上の結果から,RNNの段階的モジュラー成長は,進化の時間スケールで複雑なタスクを学習する上でのメリットをもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2024-06-10T13:44:07Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Transformer-Based Hierarchical Clustering for Brain Network Analysis [13.239896897835191]
本稿では,階層型クラスタ同定と脳ネットワーク分類のための新しい解釈可能なトランスフォーマーモデルを提案する。
階層的クラスタリング(hierarchical clustering)の助けを借りて、このモデルは精度の向上と実行時の複雑性の低減を実現し、脳領域の機能的構造に関する明確な洞察を提供する。
論文 参考訳(メタデータ) (2023-05-06T22:14:13Z) - Seeing is Believing: Brain-Inspired Modular Training for Mechanistic
Interpretability [5.15188009671301]
Brain-Inspired Modular Trainingは、ニューラルネットワークをよりモジュール的で解釈可能なものにする方法である。
BIMTは、ニューロンを幾何学的空間に埋め込み、各ニューロン接続の長さに比例して損失関数を増大させる。
論文 参考訳(メタデータ) (2023-05-04T17:56:42Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - A Graph Neural Network Framework for Causal Inference in Brain Networks [0.3392372796177108]
神経科学における中心的な問題は、脳内の自律的な動的相互作用が、比較的静的なバックボーンにどのように現れるかである。
構造解剖学的レイアウトに基づく機能的相互作用を記述するグラフニューラルネットワーク(GNN)フレームワークを提案する。
我々は,GNNがデータの長期的依存関係をキャプチャし,大規模ネットワークの解析までスケールアップ可能であることを示す。
論文 参考訳(メタデータ) (2020-10-14T15:01:21Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
本稿では,RNNの入出力動作だけでなく,内部ネットワークのダイナミクスも学習できる新しいトレーニング戦略を提案する。
提案手法は、RNNを訓練し、生理学的にインスパイアされた神経モデルの内部ダイナミクスと出力信号を同時に再現する。
注目すべきは、トレーニングアルゴリズムがニューロンの小さなサブセットの活性に依存する場合であっても、内部動力学の再現が成功することである。
論文 参考訳(メタデータ) (2020-05-05T14:16:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。