論文の概要: Equitable and Fair Performance Evaluation of Whale Optimization
Algorithm
- arxiv url: http://arxiv.org/abs/2310.07723v1
- Date: Mon, 4 Sep 2023 06:32:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 03:13:42.812455
- Title: Equitable and Fair Performance Evaluation of Whale Optimization
Algorithm
- Title(参考訳): 鯨最適化アルゴリズムの等価かつ公正な性能評価
- Authors: Bryar A. Hassan, Tarik A. Rashid, Aram Ahmed, Shko M. Qader, Jaffer
Majidpour, Mohmad Hussein Abdalla, Noor Tayfor, Hozan K. Hamarashid, Haval
Sidqi, Kaniaw A. Noori
- Abstract要約: すべてのアルゴリズムは、徹底的に、幾分、知的に評価されることが不可欠である。
最適化アルゴリズムの有効性を等しく、公平に評価することは、様々な理由から簡単なプロセスではない。
- 参考スコア(独自算出の注目度): 4.0814527055582746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is essential that all algorithms are exhaustively, somewhat, and
intelligently evaluated. Nonetheless, evaluating the effectiveness of
optimization algorithms equitably and fairly is not an easy process for various
reasons. Choosing and initializing essential parameters, such as the size
issues of the search area for each method and the number of iterations required
to reduce the issues, might be particularly challenging. As a result, this
chapter aims to contrast the Whale Optimization Algorithm (WOA) with the most
recent algorithms on a selected set of benchmark problems with varying
benchmark function hardness scores and initial control parameters comparable
problem dimensions and search space. When solving a wide range of numerical
optimization problems with varying difficulty scores, dimensions, and search
areas, the experimental findings suggest that WOA may be statistically superior
or inferior to the preceding algorithms referencing convergence speed, running
time, and memory utilization.
- Abstract(参考訳): すべてのアルゴリズムは、徹底的に、幾分、知的に評価されることが不可欠である。
それでも、最適化アルゴリズムの有効性を公平かつ公平に評価することは、様々な理由から簡単なプロセスではない。
各メソッドの検索領域のサイズ問題や,問題の削減に必要なイテレーション数など,重要なパラメータの選択と初期化は,特に困難である。
その結果,本章は,ベンチマーク関数のハードネススコアや初期制御パラメータの変動が問題次元や探索空間に匹敵する場合,選択されたベンチマーク問題群において,最新のアルゴリズムと鯨最適化アルゴリズム(woa)を対比することを目的とした。
難易度,寸法,探索領域の異なる幅広い数値最適化問題を解く場合,woaは,収束速度,実行時間,メモリ使用率を参照して,先行アルゴリズムよりも統計的に優れているか劣っている可能性が示唆された。
関連論文リスト
- A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm、QAOA)は、難解な最適化問題を解くことを目的とした、非常に有望な変分量子アルゴリズムである。
この総合的なレビューは、様々なシナリオにおけるパフォーマンス分析を含む、QAOAの現状の概要を提供する。
我々は,提案アルゴリズムの今後の展望と方向性を探りながら,選択したQAOA拡張と変種の比較研究を行う。
論文 参考訳(メタデータ) (2023-06-15T15:28:12Z) - Improving Performance Insensitivity of Large-scale Multiobjective
Optimization via Monte Carlo Tree Search [7.34812867861951]
モンテカルロ木探索に基づく大規模多目的最適化問題の解法を提案する。
提案手法は,モンテカルロ木上に新たなノードを構築するための決定変数をサンプリングし,最適化と評価を行う。
大規模な決定変数による性能感度を低下させるために、さらなる探索のための評価が良いノードを選択する。
論文 参考訳(メタデータ) (2023-04-08T17:15:49Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
オンラインアルゴリズム選択(OAS)では、アルゴリズム問題クラスのインスタンスがエージェントに次々に提示され、エージェントは、固定された候補アルゴリズムセットから、おそらく最高のアルゴリズムを迅速に選択する必要がある。
SAT(Satisfiability)のような決定問題に対して、品質は一般的にアルゴリズムのランタイムを指す。
本研究では,OASのマルチアームバンディットアルゴリズムを再検討し,この問題に対処する能力について議論する。
ランタイム指向の損失に適応し、時間的地平線に依存しない空間的・時間的複雑さを維持しながら、部分的に検閲されたデータを可能にする。
論文 参考訳(メタデータ) (2021-09-13T18:10:52Z) - Bayesian Algorithm Execution: Estimating Computable Properties of
Black-box Functions Using Mutual Information [78.78486761923855]
多くの現実世界では、T関数の評価の予算を考えると、高価なブラックボックス関数 f の性質を推測したい。
本稿では,アルゴリズムの出力に対して相互情報を最大化するクエリを逐次選択する手法InfoBAXを提案する。
これらの問題に対してInfoBAXは、元のアルゴリズムで要求されるより500倍少ないクエリをfに使用する。
論文 参考訳(メタデータ) (2021-04-19T17:22:11Z) - PAMELI: A Meta-Algorithm for Computationally Expensive Multi-Objective
Optimization Problems [0.0]
提案アルゴリズムは,実モデルのモデルによって定義される一連の代理問題の解法に基づく。
また,最適化ランドスケープのための最適なサロゲートモデルとナビゲーション戦略のメタ検索を行う。
論文 参考訳(メタデータ) (2021-03-19T11:18:03Z) - Benchmarking Simulation-Based Inference [5.3898004059026325]
確率的モデリングの最近の進歩は、確率の数値的評価を必要としないシミュレーションに基づく推論アルゴリズムを多数もたらした。
推論タスクと適切なパフォーマンス指標を備えたベンチマークを,アルゴリズムの初期選択とともに提供する。
性能指標の選択は重要であり、最先端のアルゴリズムでさえ改善の余地があり、逐次推定によりサンプリング効率が向上することがわかった。
論文 参考訳(メタデータ) (2021-01-12T18:31:22Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Data-driven Algorithm Design [21.39493074700162]
データ駆動型アルゴリズム設計は、現代のデータ科学とアルゴリズム設計の重要な側面である。
パラメータの小さな微調整は、アルゴリズムの振る舞いのカスケードを引き起こす可能性がある。
バッチおよびオンラインシナリオに対して、強力な計算および統計的パフォーマンス保証を提供する。
論文 参考訳(メタデータ) (2020-11-14T00:51:57Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Multi-objective beetle antennae search algorithm [4.847470451539327]
提案する多目的ビートルアンテナ探索アルゴリズムは,4つのよく選択されたベンチマーク関数を用いて検証する。
その結果,提案した多目的ビートルアンテナ探索アルゴリズムは計算効率が良く,精度も良好であることが示唆された。
論文 参考訳(メタデータ) (2020-02-24T06:34:32Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
我々は,数千の候補アルゴリズムの固定セットを考慮に入れた,極端なアルゴリズム選択(XAS)の設定を提案する。
我々は、XAS設定に対する最先端のAS技術の適用性を評価し、Dyadic特徴表現を利用したアプローチを提案する。
論文 参考訳(メタデータ) (2020-01-29T09:40:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。