CRITERIA: a New Benchmarking Paradigm for Evaluating Trajectory Prediction Models for Autonomous Driving
- URL: http://arxiv.org/abs/2310.07794v2
- Date: Mon, 19 Aug 2024 16:01:35 GMT
- Title: CRITERIA: a New Benchmarking Paradigm for Evaluating Trajectory Prediction Models for Autonomous Driving
- Authors: Changhe Chen, Mozhgan Pourkeshavarz, Amir Rasouli,
- Abstract summary: We propose a new benChmarking paRadIgm for evaluaTing trajEctoRy predIction Approaches (CRITERIA)
We show that the proposed benchmark can produce a more accurate ranking of the models and serve as a means of characterizing their behavior.
- Score: 6.868387710209245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Benchmarking is a common method for evaluating trajectory prediction models for autonomous driving. Existing benchmarks rely on datasets, which are biased towards more common scenarios, such as cruising, and distance-based metrics that are computed by averaging over all scenarios. Following such a regiment provides a little insight into the properties of the models both in terms of how well they can handle different scenarios and how admissible and diverse their outputs are. There exist a number of complementary metrics designed to measure the admissibility and diversity of trajectories, however, they suffer from biases, such as length of trajectories. In this paper, we propose a new benChmarking paRadIgm for evaluaTing trajEctoRy predIction Approaches (CRITERIA). Particularly, we propose 1) a method for extracting driving scenarios at varying levels of specificity according to the structure of the roads, models' performance, and data properties for fine-grained ranking of prediction models; 2) A set of new bias-free metrics for measuring diversity, by incorporating the characteristics of a given scenario, and admissibility, by considering the structure of roads and kinematic compliancy, motivated by real-world driving constraints. 3) Using the proposed benchmark, we conduct extensive experimentation on a representative set of the prediction models using the large scale Argoverse dataset. We show that the proposed benchmark can produce a more accurate ranking of the models and serve as a means of characterizing their behavior. We further present ablation studies to highlight contributions of different elements that are used to compute the proposed metrics.
Related papers
- Probabilistic Prediction of Longitudinal Trajectory Considering Driving
Heterogeneity with Interpretability [12.929047288003213]
This study proposes a trajectory prediction framework that combines Mixture Density Networks (MDN) and considers the driving heterogeneity to provide probabilistic and personalized predictions.
The proposed framework is tested based on a wide-range vehicle trajectory dataset.
arXiv Detail & Related papers (2023-12-19T12:56:56Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - Leveraging Variational Autoencoders for Parameterized MMSE Estimation [10.141454378473972]
We propose a variational autoencoder-based framework for parameterizing a conditional linear minimum mean squared error estimator.
The derived estimator is shown to approximate the minimum mean squared error estimator by utilizing the variational autoencoder as a generative prior for the estimation problem.
We conduct a rigorous analysis by bounding the difference between the proposed and the minimum mean squared error estimator.
arXiv Detail & Related papers (2023-07-11T15:41:34Z) - Bridging the Gap Between Multi-Step and One-Shot Trajectory Prediction
via Self-Supervision [2.365702128814616]
Accurate vehicle trajectory prediction is an unsolved problem in autonomous driving.
We propose a middle-ground where multiple trajectory segments are chained together.
Our proposed Multi-Branch Self-Supervised Predictor receives additional training on new predictions starting at intermediate future segments.
arXiv Detail & Related papers (2023-06-06T02:46:28Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
We describe a general framework called Model-to-Match that achieves these goals.
Model-to-Match uses variable importance measurements to construct a distance metric.
We operationalize the Model-to-Match framework with LASSO.
arXiv Detail & Related papers (2023-02-23T00:43:03Z) - Driving Points Prediction For Abdominal Probabilistic Registration [3.4093813201755627]
Probability displacement registration models estimate displacement distribution for a subset of points.
We propose in this work to learn a driving points predictor.
We evaluate the impact of our contribution on two different datasets corresponding to different modalities.
arXiv Detail & Related papers (2022-08-05T15:28:01Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
We propose a generic generative neural system for multi-agent trajectory prediction involving heterogeneous agents.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2021-02-18T02:25:35Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance.
We provide tractable algorithms to compute the range of attainable group-level predictive disparities.
We extend our framework to address the empirically relevant challenge of selectively labelled data.
arXiv Detail & Related papers (2021-01-02T02:11:37Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.