論文の概要: Few-shot Metric Domain Adaptation: Practical Learning Strategies for an Automated Plant Disease Diagnosis
- arxiv url: http://arxiv.org/abs/2412.18859v1
- Date: Wed, 25 Dec 2024 10:01:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:28:24.634725
- Title: Few-shot Metric Domain Adaptation: Practical Learning Strategies for an Automated Plant Disease Diagnosis
- Title(参考訳): 数ショットのメトリックドメイン適応:自動植物病診断のための実践的学習戦略
- Authors: Shoma Kudo, Satoshi Kagiwada, Hitoshi Iyatomi,
- Abstract要約: FMDA(Few-shot Metric Domain Adaptation)は、実用的なシステムにおける診断精度を高めるための柔軟で効果的なアプローチである。
FMDAは、ソース(トレーニング)データの特徴空間とターゲットデータとの"距離"を最小限に抑える診断モデルに制約を導入することで、ドメインの相違を低減します。
大規模な実験では、FMDAはF1スコアを11.1点から29.3点に改善した。
- 参考スコア(独自算出の注目度): 2.7992435001846827
- License:
- Abstract: Numerous studies have explored image-based automated systems for plant disease diagnosis, demonstrating impressive diagnostic capabilities. However, recent large-scale analyses have revealed a critical limitation: that the diagnostic capability suffers significantly when validated on images captured in environments (domains) differing from those used during training. This shortfall stems from the inherently limited dataset size and the diverse manifestation of disease symptoms, combined with substantial variations in cultivation environments and imaging conditions, such as equipment and composition. These factors lead to insufficient variety in training data, ultimately constraining the system's robustness and generalization. To address these challenges, we propose Few-shot Metric Domain Adaptation (FMDA), a flexible and effective approach for enhancing diagnostic accuracy in practical systems, even when only limited target data is available. FMDA reduces domain discrepancies by introducing a constraint to the diagnostic model that minimizes the "distance" between feature spaces of source (training) data and target data with limited samples. FMDA is computationally efficient, requiring only basic feature distance calculations and backpropagation, and can be seamlessly integrated into any machine learning (ML) pipeline. In large-scale experiments, involving 223,015 leaf images across 20 fields and 3 crop species, FMDA achieved F1 score improvements of 11.1 to 29.3 points compared to cases without target data, using only 10 images per disease from the target domain. Moreover, FMDA consistently outperformed fine-tuning methods utilizing the same data, with an average improvement of 8.5 points.
- Abstract(参考訳): 植物病の診断のための画像ベースの自動システムについて多くの研究が行われており、目覚ましい診断能力を示している。
しかし、最近の大規模分析では、診断能力はトレーニング中に使用されるものとは異なる環境(ドメイン)で撮影された画像に対して著しく低下することが明らかになっている。
この欠点は、本質的に限られたデータセットのサイズと、病気の症状の多様さに起因し、栽培環境や、機器や構成などの画像条件のかなりの変化と相まって生じる。
これらの要因はトレーニングデータに不十分な多様性をもたらし、最終的にはシステムの堅牢性と一般化を制約する。
これらの課題に対処するために,限定された対象データしか利用できない場合でも,実用システムにおける診断精度を向上させるためのフレキシブルかつ効果的なアプローチであるFew-shot Metric Domain Adaptation (FMDA)を提案する。
FMDAは、ソース(トレーニング)データの特徴空間とターゲットデータとの"距離"を最小限に抑える診断モデルに制約を導入することで、ドメインの相違を低減します。
FMDAは計算効率が良く、基本的な特徴距離計算とバックプロパゲーションしか必要とせず、任意の機械学習(ML)パイプラインにシームレスに統合できる。
20の畑と3種の葉の223,015枚の画像を含む大規模な実験において、FMDAはF1スコアを目標データのない場合と比較して11.1から29.3ポイント改善した。
さらに、FMDAは、同じデータを利用した微調整法を一貫して上回り、平均8.5ポイント改善した。
関連論文リスト
- DDD: Discriminative Difficulty Distance for plant disease diagnosis [2.7992435001846827]
植物病の診断は難しい分類課題である。
差別的困難距離(DDD)は、トレーニングとテストデータセットの間のドメインギャップを定量化するために設計された、新しいメトリクスである。
論文 参考訳(メタデータ) (2025-01-01T05:34:59Z) - MMed-RAG: Versatile Multimodal RAG System for Medical Vision Language Models [49.765466293296186]
近年,Med-LVLM (Med-LVLMs) の進歩により,対話型診断ツールの新たな可能性が高まっている。
Med-LVLMは、しばしば事実の幻覚に悩まされ、誤った診断につながることがある。
我々は,Med-LVLMの現実性を高めるために,多目的マルチモーダルRAGシステムMMed-RAGを提案する。
論文 参考訳(メタデータ) (2024-10-16T23:03:27Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - Domain-invariant Clinical Representation Learning by Bridging Data Distribution Shift across EMR Datasets [28.59271580918754]
効果的な予後モデルは、医師が正確な診断を行い、パーソナライズされた治療計画を設計するのを助けることができる。
限られたデータ収集、不十分な臨床経験、プライバシと倫理上の懸念は、データの可用性を制限します。
本稿では,ソースとターゲットデータセット間の遷移モデルを構築するドメイン不変表現学習手法を提案する。
論文 参考訳(メタデータ) (2023-10-11T18:32:21Z) - Mind the Gap: Federated Learning Broadens Domain Generalization in
Diagnostic AI Models [2.192472845284658]
5施設の胸部X線写真610,000点を用いて, 診断成績を訓練戦略の機能として評価した。
大規模データセットはFLで最小のパフォーマンス向上を示したが、いくつかのケースでは低下を見せた。
さまざまな外部機関間で協調的にトレーニングを行う場合、AIモデルは、ドメイン外のタスクのためにローカルにトレーニングされたモデルを一貫して上回った。
論文 参考訳(メタデータ) (2023-10-01T18:27:59Z) - Towards Robust Plant Disease Diagnosis with Hard-sample Re-mining
Strategy [6.844857856353672]
ハードサンプルリマイニング(HSReM)という,シンプルだが効果的なトレーニング戦略を提案する。
HSReMは、健康なデータの診断性能を高め、同時に疾患データの性能を向上させるように設計されている。
実験の結果,HSReMトレーニング戦略は大規模未確認データに対する診断性能を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2023-09-05T02:26:42Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
大腸内視鏡検査は臨床診断や治療に不可欠である。
注釈付きデータの不足は、既存の手法の有効性と一般化を制限する。
本稿では, 下流作業に有用な大腸内視鏡画像を生成するために, 適応Refinement Semantic Diffusion Model (ArSDM)を提案する。
論文 参考訳(メタデータ) (2023-09-03T07:55:46Z) - Realistic Data Enrichment for Robust Image Segmentation in
Histopathology [2.248423960136122]
拡散モデルに基づく新しい手法を提案し、不均衡なデータセットを、表現不足なグループから有意な例で拡張する。
本手法は,限定的な臨床データセットを拡張して,機械学習パイプラインのトレーニングに適したものにする。
論文 参考訳(メタデータ) (2023-04-19T09:52:50Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。