An Information Bottleneck Characterization of the Understanding-Workload
Tradeoff
- URL: http://arxiv.org/abs/2310.07802v1
- Date: Wed, 11 Oct 2023 18:35:26 GMT
- Title: An Information Bottleneck Characterization of the Understanding-Workload
Tradeoff
- Authors: Lindsay Sanneman, Mycal Tucker, and Julie Shah
- Abstract summary: Consideration of human factors that impact explanation efficacy is central to explainable AI (XAI) design.
Existing work in XAI has demonstrated a tradeoff between understanding and workload induced by different types of explanations.
- Score: 15.90243405031747
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in artificial intelligence (AI) have underscored the need for
explainable AI (XAI) to support human understanding of AI systems.
Consideration of human factors that impact explanation efficacy, such as mental
workload and human understanding, is central to effective XAI design. Existing
work in XAI has demonstrated a tradeoff between understanding and workload
induced by different types of explanations. Explaining complex concepts through
abstractions (hand-crafted groupings of related problem features) has been
shown to effectively address and balance this workload-understanding tradeoff.
In this work, we characterize the workload-understanding balance via the
Information Bottleneck method: an information-theoretic approach which
automatically generates abstractions that maximize informativeness and minimize
complexity. In particular, we establish empirical connections between workload
and complexity and between understanding and informativeness through
human-subject experiments. This empirical link between human factors and
information-theoretic concepts provides an important mathematical
characterization of the workload-understanding tradeoff which enables
user-tailored XAI design.
Related papers
- Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Helpful, Misleading or Confusing: How Humans Perceive Fundamental
Building Blocks of Artificial Intelligence Explanations [11.667611038005552]
We take a step back from sophisticated predictive algorithms and look into explainability of simple decision-making models.
We aim to assess how people perceive comprehensibility of their different representations.
This allows us to capture how diverse stakeholders judge intelligibility of fundamental concepts that more elaborate artificial intelligence explanations are built from.
arXiv Detail & Related papers (2023-03-02T03:15:35Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
The emphasis of XAI research appears to have turned to a more pragmatic explanation approach for better understanding.
An extensive area where cognitive science research may substantially influence XAI advancements is evaluating user knowledge and feedback.
We propose a framework to experiment with generating and evaluating the explanations on the grounds of different cognitive levels of understanding.
arXiv Detail & Related papers (2022-10-31T19:20:22Z) - Towards Explainable Artificial Intelligence in Banking and Financial
Services [0.0]
We study and analyze the recent work done in Explainable Artificial Intelligence (XAI) methods and tools.
We introduce a novel XAI process, which facilitates producing explainable models while maintaining a high level of learning performance.
We develop a digital dashboard to facilitate interacting with the algorithm results.
arXiv Detail & Related papers (2021-12-14T08:02:13Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
We review recent works in the direction to attain Explainable Reinforcement Learning (XRL)
In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box.
arXiv Detail & Related papers (2020-08-15T10:11:42Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
We propose the use of hybrid AI methodology as a framework for combining the strengths of data-driven and knowledge-driven approaches.
Specifically, we inherit the concept of neuro-symbolism as a way of using knowledge-bases to guide the learning progress of deep neural networks.
arXiv Detail & Related papers (2020-03-09T15:04:07Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.