Probabilistic error cancellation for dynamic quantum circuits
- URL: http://arxiv.org/abs/2310.07825v2
- Date: Fri, 15 Dec 2023 20:33:09 GMT
- Title: Probabilistic error cancellation for dynamic quantum circuits
- Authors: Riddhi S. Gupta, Ewout van den Berg, Maika Takita, Diego Riste,
Kristan Temme, and Abhinav Kandala
- Abstract summary: In this work we extend the application of PEC from unitary-only circuits to dynamic circuits with measurement-based operations.
Our approach extends the sparse Pauli-Lindblad noise model to measurement-based operations while accounting for non-local measurement crosstalk in superconducting processors.
- Score: 0.1794906241363549
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Probabilistic error cancellation (PEC) is a technique that generates
error-mitigated estimates of expectation values from ensembles of quantum
circuits. In this work we extend the application of PEC from unitary-only
circuits to dynamic circuits with measurement-based operations, such as
mid-circuit measurements and classically-controlled (feedforward) Clifford
operations. Our approach extends the sparse Pauli-Lindblad noise model to
measurement-based operations while accounting for non-local measurement
crosstalk in superconducting processors. Our mitigation and monitoring
experiments provide a holistic view for the performance of the protocols
developed in this work. These capabilities will be a crucial tool in the
exploration of near-term dynamic circuit applications.
Related papers
- Readout Error Mitigation for Mid-Circuit Measurements and Feedforward [0.0]
Current quantum computing platforms suffer from readout errors, where faulty measurement outcomes are reported by the device.
We propose a general protocol for mitigating mid-circuit measurement errors in the presence of feedforward.
Our method demonstrates up to a $sim 60%$ reduction in error on superconducting quantum processors.
arXiv Detail & Related papers (2024-06-11T18:00:01Z) - Parametrically controlled chiral interface for superconducting quantum devices [0.0]
Nonreciprocal microwave routing plays a crucial role for measuring quantum circuits.
Ferrite-based circulators suffer from excess loss, a large footprint, and fixed directionality.
Here, we report the design and experimental realization of a minimal controllable directional interface.
arXiv Detail & Related papers (2024-05-23T22:15:40Z) - Reducing Mid-Circuit Measurements via Probabilistic Circuits [0.13108652488669736]
Mid-circuit measurements and measurement-controlled gates are supported by an increasing number of quantum hardware platforms.
This work presents a static circuit optimization that can substitute some of these measurements with an equivalent circuit with randomized gate applications.
arXiv Detail & Related papers (2024-05-22T15:33:19Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Probabilistic error cancellation with sparse Pauli-Lindblad models on
noisy quantum processors [0.7299729677753102]
We present a protocol for learning and inverting a sparse noise model that is able to capture correlated noise and scales to large quantum devices.
These advances allow us to demonstrate PEC on a superconducting quantum processor with crosstalk errors.
arXiv Detail & Related papers (2022-01-24T18:40:43Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z) - Modeling Noisy Quantum Circuits Using Experimental Characterization [0.40611352512781856]
Noisy intermediate-scale quantum (NISQ) devices offer unique platforms to test and evaluate the behavior of non-fault-tolerant quantum computing.
We present a test-driven approach to characterizing NISQ programs that manages the complexity of noisy circuit modeling.
arXiv Detail & Related papers (2020-01-23T16:45:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.