Enhancing Text-based Knowledge Graph Completion with Zero-Shot Large Language Models: A Focus on Semantic Enhancement
- URL: http://arxiv.org/abs/2310.08279v3
- Date: Thu, 27 Jun 2024 04:55:28 GMT
- Title: Enhancing Text-based Knowledge Graph Completion with Zero-Shot Large Language Models: A Focus on Semantic Enhancement
- Authors: Rui Yang, Jiahao Zhu, Jianping Man, Li Fang, Yi Zhou,
- Abstract summary: We introduce a framework termed constrained prompts for KGC (CP-KGC)
This framework designs prompts that adapt to different datasets to enhance semantic richness.
This study extends the performance limits of existing models and promotes further integration of KGC with large language models.
- Score: 8.472388165833292
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The design and development of text-based knowledge graph completion (KGC) methods leveraging textual entity descriptions are at the forefront of research. These methods involve advanced optimization techniques such as soft prompts and contrastive learning to enhance KGC models. The effectiveness of text-based methods largely hinges on the quality and richness of the training data. Large language models (LLMs) can utilize straightforward prompts to alter text data, thereby enabling data augmentation for KGC. Nevertheless, LLMs typically demand substantial computational resources. To address these issues, we introduce a framework termed constrained prompts for KGC (CP-KGC). This CP-KGC framework designs prompts that adapt to different datasets to enhance semantic richness. Additionally, CP-KGC employs a context constraint strategy to effectively identify polysemous entities within KGC datasets. Through extensive experimentation, we have verified the effectiveness of this framework. Even after quantization, the LLM (Qwen-7B-Chat-int4) still enhances the performance of text-based KGC methods \footnote{Code and datasets are available at \href{https://github.com/sjlmg/CP-KGC}{https://github.com/sjlmg/CP-KGC}}. This study extends the performance limits of existing models and promotes further integration of KGC with LLMs.
Related papers
- GLTW: Joint Improved Graph Transformer and LLM via Three-Word Language for Knowledge Graph Completion [52.026016846945424]
We propose a new method called GLTW, which encodes the structural information of KGs and merges it with Large Language Models.
Specifically, we introduce an improved Graph Transformer (iGT) that effectively encodes subgraphs with both local and global structural information.
Also, we develop a subgraph-based multi-classification training objective, using all entities within KG as classification objects, to boost learning efficiency.
arXiv Detail & Related papers (2025-02-17T06:02:59Z) - KG-CF: Knowledge Graph Completion with Context Filtering under the Guidance of Large Language Models [55.39134076436266]
KG-CF is a framework tailored for ranking-based knowledge graph completion tasks.
KG-CF leverages LLMs' reasoning abilities to filter out irrelevant contexts, achieving superior results on real-world datasets.
arXiv Detail & Related papers (2025-01-06T01:52:15Z) - In-Context Learning with Topological Information for Knowledge Graph Completion [3.035601871864059]
We develop a novel method that incorporates topological information through in-context learning to enhance knowledge graph performance.
Our approach achieves strong performance in the transductive setting i.e., nodes in the test graph dataset are present in the training graph dataset.
Our method demonstrates superior performance compared to baselines on the ILPC-small and ILPC-large datasets.
arXiv Detail & Related papers (2024-12-11T19:29:36Z) - GS-KGC: A Generative Subgraph-based Framework for Knowledge Graph Completion with Large Language Models [7.995716933782121]
We propose a novel completion framework called textbfGenerative textbfSubgraph-based KGC (GS-KGC)
This framework primarily includes a subgraph partitioning algorithm designed to generate negatives and neighbors.
Experiments conducted on four common KGC datasets highlight the advantages of the proposed GS-KGC.
arXiv Detail & Related papers (2024-08-20T13:13:41Z) - CELA: Cost-Efficient Language Model Alignment for CTR Prediction [70.65910069412944]
Click-Through Rate (CTR) prediction holds a paramount position in recommender systems.
Recent efforts have sought to mitigate these challenges by integrating Pre-trained Language Models (PLMs)
We propose textbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA) for CTR prediction.
arXiv Detail & Related papers (2024-05-17T07:43:25Z) - Multi-perspective Improvement of Knowledge Graph Completion with Large
Language Models [95.31941227776711]
We propose MPIKGC to compensate for the deficiency of contextualized knowledge and improve KGC by querying large language models (LLMs)
We conducted extensive evaluation of our framework based on four description-based KGC models and four datasets, for both link prediction and triplet classification tasks.
arXiv Detail & Related papers (2024-03-04T12:16:15Z) - KICGPT: Large Language Model with Knowledge in Context for Knowledge
Graph Completion [27.405080941584533]
We propose KICGPT, a framework that integrates a large language model and a triple-based KGC retriever.
It alleviates the long-tail problem without incurring additional training overhead.
Empirical results on benchmark datasets demonstrate the effectiveness of KICGPT with smaller training overhead and no finetuning.
arXiv Detail & Related papers (2024-02-04T08:01:07Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
We introduce the Contextualization Distillation strategy, a plug-in-and-play approach compatible with both discriminative and generative KGC frameworks.
Our method begins by instructing large language models to transform compact, structural triplets into context-rich segments.
Comprehensive evaluations across diverse datasets and KGC techniques highlight the efficacy and adaptability of our approach.
arXiv Detail & Related papers (2024-01-28T08:56:49Z) - Prompting Disentangled Embeddings for Knowledge Graph Completion with Pre-trained Language Model [36.433231939256395]
Both graph structures and textual information play a critical role in Knowledge Graph Completion (KGC)
We propose a new KGC method named PDKGC with two prompts -- a hard task prompt and a disentangled structure prompt.
With the two prompts, PDKGC builds a textual predictor and a structural predictor, respectively, and their combination leads to more comprehensive entity prediction.
arXiv Detail & Related papers (2023-12-04T12:20:25Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
A key innovation is our use of explanations as features, which can be used to boost GNN performance on downstream tasks.
Our method achieves state-of-the-art results on well-established TAG datasets.
Our method significantly speeds up training, achieving a 2.88 times improvement over the closest baseline on ogbn-arxiv.
arXiv Detail & Related papers (2023-05-31T03:18:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.