GS-KGC: A Generative Subgraph-based Framework for Knowledge Graph Completion with Large Language Models
- URL: http://arxiv.org/abs/2408.10819v2
- Date: Fri, 03 Jan 2025 04:12:32 GMT
- Title: GS-KGC: A Generative Subgraph-based Framework for Knowledge Graph Completion with Large Language Models
- Authors: Rui Yang, Jiahao Zhu, Jianping Man, Hongze Liu, Li Fang, Yi Zhou,
- Abstract summary: We propose a novel completion framework called textbfGenerative textbfSubgraph-based KGC (GS-KGC)
This framework primarily includes a subgraph partitioning algorithm designed to generate negatives and neighbors.
Experiments conducted on four common KGC datasets highlight the advantages of the proposed GS-KGC.
- Score: 7.995716933782121
- License:
- Abstract: Knowledge graph completion (KGC) focuses on identifying missing triples in a knowledge graph (KG) , which is crucial for many downstream applications. Given the rapid development of large language models (LLMs), some LLM-based methods are proposed for KGC task. However, most of them focus on prompt engineering while overlooking the fact that finer-grained subgraph information can aid LLMs in generating more accurate answers. In this paper, we propose a novel completion framework called \textbf{G}enerative \textbf{S}ubgraph-based KGC (GS-KGC), which utilizes subgraph information as contextual reasoning and employs a QA approach to achieve the KGC task. This framework primarily includes a subgraph partitioning algorithm designed to generate negatives and neighbors. Specifically, negatives can encourage LLMs to generate a broader range of answers, while neighbors provide additional contextual insights for LLM reasoning. Furthermore, we found that GS-KGC can discover potential triples within the KGs and new facts beyond the KGs. Experiments conducted on four common KGC datasets highlight the advantages of the proposed GS-KGC, e.g., it shows a 5.6\% increase in Hits@3 compared to the LLM-based model CP-KGC on the FB15k-237N, and a 9.3\% increase over the LLM-based model TECHS on the ICEWS14.
Related papers
- GLTW: Joint Improved Graph Transformer and LLM via Three-Word Language for Knowledge Graph Completion [52.026016846945424]
We propose a new method called GLTW, which encodes the structural information of KGs and merges it with Large Language Models.
Specifically, we introduce an improved Graph Transformer (iGT) that effectively encodes subgraphs with both local and global structural information.
Also, we develop a subgraph-based multi-classification training objective, using all entities within KG as classification objects, to boost learning efficiency.
arXiv Detail & Related papers (2025-02-17T06:02:59Z) - KG-CF: Knowledge Graph Completion with Context Filtering under the Guidance of Large Language Models [55.39134076436266]
KG-CF is a framework tailored for ranking-based knowledge graph completion tasks.
KG-CF leverages LLMs' reasoning abilities to filter out irrelevant contexts, achieving superior results on real-world datasets.
arXiv Detail & Related papers (2025-01-06T01:52:15Z) - Simple Is Effective: The Roles of Graphs and Large Language Models in Knowledge-Graph-Based Retrieval-Augmented Generation [9.844598565914055]
Large Language Models (LLMs) demonstrate strong reasoning abilities but face limitations such as hallucinations and outdated knowledge.
We introduce SubgraphRAG, extending the Knowledge Graph (KG)-based Retrieval-Augmented Generation (RAG) framework that retrieves subgraphs.
Our approach innovatively integrates a lightweight multilayer perceptron with a parallel triple-scoring mechanism for efficient and flexible subgraph retrieval.
arXiv Detail & Related papers (2024-10-28T04:39:32Z) - Decoding on Graphs: Faithful and Sound Reasoning on Knowledge Graphs through Generation of Well-Formed Chains [66.55612528039894]
Knowledge Graphs (KGs) can serve as reliable knowledge sources for question answering (QA)
We present DoG (Decoding on Graphs), a novel framework that facilitates a deep synergy between LLMs and KGs.
Experiments across various KGQA tasks with different background KGs demonstrate that DoG achieves superior and robust performance.
arXiv Detail & Related papers (2024-10-24T04:01:40Z) - Paths-over-Graph: Knowledge Graph Empowered Large Language Model Reasoning [19.442426875488675]
We propose Paths-over-Graph (PoG), a novel method that enhances Large Language Models (LLMs) reasoning by integrating knowledge reasoning paths from KGs.
PoG tackles multi-hop and multi-entity questions through a three-phase dynamic multi-hop path exploration.
In experiments, PoG with GPT-3.5-Turbo surpasses ToG with GPT-4 by up to 23.9%.
arXiv Detail & Related papers (2024-10-18T06:57:19Z) - Graph-constrained Reasoning: Faithful Reasoning on Knowledge Graphs with Large Language Models [83.28737898989694]
Large language models (LLMs) struggle with faithful reasoning due to knowledge gaps and hallucinations.
We introduce graph-constrained reasoning (GCR), a novel framework that bridges structured knowledge in KGs with unstructured reasoning in LLMs.
GCR achieves state-of-the-art performance and exhibits strong zero-shot generalizability to unseen KGs without additional training.
arXiv Detail & Related papers (2024-10-16T22:55:17Z) - Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering [87.67177556994525]
We propose a training-free method called Generate-on-Graph (GoG) to generate new factual triples while exploring Knowledge Graphs (KGs)
GoG performs reasoning through a Thinking-Searching-Generating framework, which treats LLM as both Agent and KG in IKGQA.
arXiv Detail & Related papers (2024-04-23T04:47:22Z) - Multi-perspective Improvement of Knowledge Graph Completion with Large
Language Models [95.31941227776711]
We propose MPIKGC to compensate for the deficiency of contextualized knowledge and improve KGC by querying large language models (LLMs)
We conducted extensive evaluation of our framework based on four description-based KGC models and four datasets, for both link prediction and triplet classification tasks.
arXiv Detail & Related papers (2024-03-04T12:16:15Z) - Enhancing Text-based Knowledge Graph Completion with Zero-Shot Large Language Models: A Focus on Semantic Enhancement [8.472388165833292]
We introduce a framework termed constrained prompts for KGC (CP-KGC)
This framework designs prompts that adapt to different datasets to enhance semantic richness.
This study extends the performance limits of existing models and promotes further integration of KGC with large language models.
arXiv Detail & Related papers (2023-10-12T12:31:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.