論文の概要: Can We Edit Multimodal Large Language Models?
- arxiv url: http://arxiv.org/abs/2310.08475v3
- Date: Sun, 24 Dec 2023 12:59:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-27 21:41:26.428550
- Title: Can We Edit Multimodal Large Language Models?
- Title(参考訳): マルチモーダル大言語モデルの編集は可能か?
- Authors: Siyuan Cheng, Bozhong Tian, Qingbin Liu, Xi Chen, Yongheng Wang,
Huajun Chen, Ningyu Zhang
- Abstract要約: マルチモーダル LLM を編集するための新しいベンチマーク MMEdit を構築した。
様々なモデル編集ベースラインを含む総合的な実験を行い、異なるコンポーネントの編集の影響を分析する。
- 参考スコア(独自算出の注目度): 40.21278350372527
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we focus on editing Multimodal Large Language Models (MLLMs).
Compared to editing single-modal LLMs, multimodal model editing is more
challenging, which demands a higher level of scrutiny and careful consideration
in the editing process. To facilitate research in this area, we construct a new
benchmark, dubbed MMEdit, for editing multimodal LLMs and establishing a suite
of innovative metrics for evaluation. We conduct comprehensive experiments
involving various model editing baselines and analyze the impact of editing
different components for multimodal LLMs. Empirically, we notice that previous
baselines can implement editing multimodal LLMs to some extent, but the effect
is still barely satisfactory, indicating the potential difficulty of this task.
We hope that our work can provide the NLP community with insights. Code and
dataset are available in https://github.com/zjunlp/EasyEdit.
- Abstract(参考訳): 本稿では,MLLM(Multimodal Large Language Models)の編集に焦点をあてる。
単一モードLLMの編集に比べ、マルチモーダルモデル編集はより困難であり、編集プロセスにおいてより高度な精査と慎重な考慮が必要である。
そこで本研究では,マルチモーダル LLM の編集と評価のための革新的な指標のスイートを構築するため,MMEdit という新しいベンチマークを構築した。
各種モデル編集ベースラインの包括的実験を行い、多モードLLMにおける様々なコンポーネントの編集の影響を分析した。
経験的に、以前のベースラインはある程度はマルチモーダル LLM の編集を実装できるが、その効果はいまだに十分であり、この課題の潜在的な難しさを示している。
私たちの研究がNLPコミュニティに洞察を与えてくれることを願っています。
コードとデータセットはhttps://github.com/zjunlp/EasyEditで入手できる。
関連論文リスト
- Lifelong Knowledge Editing for Vision Language Models with Low-Rank Mixture-of-Experts [17.376346967267327]
我々は、生涯LLM編集とビジョンLLM編集のギャップを埋めるために、LIfelong Vision言語modEl EditのLiveEditを提案する。
ビジュアルセマンティック知識を活用するためにハードフィルタリング機構を開発し、入力クエリの視覚的に無関係な専門家を排除した。
視覚的に関係のある専門家を統合するために,テキストの意味的関連性に基づくソフトルーティング機構を導入し,マルチエキスパート融合を実現する。
論文 参考訳(メタデータ) (2024-11-23T03:19:40Z) - Instruction-Guided Editing Controls for Images and Multimedia: A Survey in LLM era [50.19334853510935]
命令ベースの編集の最近の進歩は、ユーザ意図と複雑な編集操作の間の橋渡しとして自然言語を用いて、視覚コンテンツとの直感的な対話を可能にしている。
我々は,エンターテイメントから教育に至るまで,様々な産業において強力なビジュアル編集を民主化することを目指している。
論文 参考訳(メタデータ) (2024-11-15T05:18:15Z) - Editing Conceptual Knowledge for Large Language Models [65.38231526537476]
本稿では,Large Language Models(LLMs)における概念知識の編集の先駆者となる。
本研究では,新しいベンチマークデータセットConceptEditを構築し,評価のための新しいメトリクスセットを確立する。
実験の結果,既存の編集手法は概念レベルの定義をある程度効率的に修正できるが,関連する瞬間的知識を歪ませる可能性も示された。
論文 参考訳(メタデータ) (2024-03-10T16:57:10Z) - The Butterfly Effect of Model Editing: Few Edits Can Trigger Large Language Models Collapse [58.0132400208411]
単一の編集でさえモデル崩壊を引き起こし、様々なベンチマークタスクで大幅なパフォーマンス低下を示す。
編集後の大規模言語モデルのベンチマークは、過激な時間とリソース集約である。
我々は、GPT-3.5を用いて、ハードケースに基づいた新しいデータセット、HardEditを開発した。
論文 参考訳(メタデータ) (2024-02-15T01:50:38Z) - MELO: Enhancing Model Editing with Neuron-Indexed Dynamic LoRA [34.21194537887934]
ニューロンインデクシング動的LoRA(MELO)に基づくプラグインモデル編集手法を提案する。
提案するMELOは,3つの逐次編集タスクにおける最先端の編集性能を実現する。
論文 参考訳(メタデータ) (2023-12-19T02:11:01Z) - Macaw-LLM: Multi-Modal Language Modeling with Image, Audio, Video, and
Text Integration [50.94902442781148]
視覚情報,音声情報,テキスト情報をシームレスに統合する新しい多モード大言語モデル(LLM)を提案する。
Macaw-LLMは、マルチモーダルデータを符号化するモダリティモジュール、事前訓練されたLLMを利用する認知モジュール、多様な表現を調和させるアライメントモジュールの3つの主要コンポーネントから構成される。
我々は,69K画像インスタンスと50Kビデオインスタンスを含む,大規模なマルチモーダル・インストラクション・データセットを構築した。
論文 参考訳(メタデータ) (2023-06-15T12:45:25Z) - Editing Large Language Models: Problems, Methods, and Opportunities [51.903537096207]
本稿では, LLMのモデル編集に関わる問題, 方法, 機会を深く探究する。
本稿では,モデル編集に関わるタスク定義と課題の概観と,現在処理中の最も進歩的な手法の詳細な実証分析について述べる。
本研究の目的は,各編集手法の有効性と実現可能性に関する貴重な知見を提供することであり,特定のタスクやコンテキストに対して,最も適切な方法の選択に関する情報決定を行う上で,コミュニティを支援することである。
論文 参考訳(メタデータ) (2023-05-22T16:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。