Fed-Safe: Securing Federated Learning in Healthcare Against Adversarial
Attacks
- URL: http://arxiv.org/abs/2310.08681v1
- Date: Thu, 12 Oct 2023 19:33:53 GMT
- Title: Fed-Safe: Securing Federated Learning in Healthcare Against Adversarial
Attacks
- Authors: Erfan Darzi, Nanna M. Sijtsema, P.M.A van Ooijen
- Abstract summary: This paper explores the security aspects of federated learning applications in medical image analysis.
We show that incorporating distributed noise, grounded in the privacy guarantees in federated settings, enables the development of a adversarially robust model.
- Score: 1.2277343096128712
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores the security aspects of federated learning applications
in medical image analysis. Current robustness-oriented methods like adversarial
training, secure aggregation, and homomorphic encryption often risk privacy
compromises. The central aim is to defend the network against potential privacy
breaches while maintaining model robustness against adversarial manipulations.
We show that incorporating distributed noise, grounded in the privacy
guarantees in federated settings, enables the development of a adversarially
robust model that also meets federated privacy standards. We conducted
comprehensive evaluations across diverse attack scenarios, parameters, and use
cases in cancer imaging, concentrating on pathology, meningioma, and glioma.
The results reveal that the incorporation of distributed noise allows for the
attainment of security levels comparable to those of conventional adversarial
training while requiring fewer retraining samples to establish a robust model.
Related papers
- Privacy-Preserving Heterogeneous Federated Learning for Sensitive Healthcare Data [12.30620268528346]
We propose a new framework termed Abstention-Aware Federated Voting (AAFV)
AAFV can collaboratively and confidentially train heterogeneous local models while simultaneously protecting the data privacy.
In particular, the proposed abstention-aware voting mechanism exploits a threshold-based abstention method to select high-confidence votes from heterogeneous local models.
arXiv Detail & Related papers (2024-06-15T08:43:40Z) - The Pitfalls and Promise of Conformal Inference Under Adversarial Attacks [90.52808174102157]
In safety-critical applications such as medical imaging and autonomous driving, it is imperative to maintain both high adversarial robustness to protect against potential adversarial attacks.
A notable knowledge gap remains concerning the uncertainty inherent in adversarially trained models.
This study investigates the uncertainty of deep learning models by examining the performance of conformal prediction (CP) in the context of standard adversarial attacks.
arXiv Detail & Related papers (2024-05-14T18:05:19Z) - Privacy Threats in Stable Diffusion Models [0.7366405857677227]
This paper introduces a novel approach to membership inference attacks (MIA) targeting stable diffusion computer vision models.
MIAs aim to extract sensitive information about a model's training data, posing significant privacy concerns.
We devise a black-box MIA that only needs to query the victim model repeatedly.
arXiv Detail & Related papers (2023-11-15T20:31:40Z) - Vision Through the Veil: Differential Privacy in Federated Learning for
Medical Image Classification [15.382184404673389]
The proliferation of deep learning applications in healthcare calls for data aggregation across various institutions.
Privacy-preserving mechanisms are paramount in medical image analysis, where the data being sensitive in nature.
This study addresses the need by integrating differential privacy, a leading privacy-preserving technique, into a federated learning framework for medical image classification.
arXiv Detail & Related papers (2023-06-30T16:48:58Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
Combination of adversarial training and federated learning can lead to the undesired robustness deterioration.
We propose a novel framework called Slack Federated Adversarial Training (SFAT)
We verify the rationality and effectiveness of SFAT on various benchmarked and real-world datasets.
arXiv Detail & Related papers (2023-03-01T06:16:15Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
We consider vertical logistic regression (VLR) trained with mini-batch descent gradient.
We provide a comprehensive and rigorous privacy analysis of VLR in a class of open-source Federated Learning frameworks.
arXiv Detail & Related papers (2022-07-19T05:47:30Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
We study the provable robustness of reinforcement learning against norm-bounded adversarial perturbations of the inputs.
We generate certificates that guarantee that the total reward obtained by the smoothed policy will not fall below a certain threshold under a norm-bounded adversarial of perturbation the input.
arXiv Detail & Related papers (2021-06-21T21:42:08Z) - Defending Medical Image Diagnostics against Privacy Attacks using
Generative Methods [10.504951891644474]
We develop and evaluate a privacy defense protocol based on using a generative adversarial network (GAN)
We validate the proposed method on retinal diagnostics AI used for diabetic retinopathy that bears the risk of possibly leaking private information.
arXiv Detail & Related papers (2021-03-04T15:02:57Z) - Robustness Threats of Differential Privacy [70.818129585404]
We experimentally demonstrate that networks, trained with differential privacy, in some settings might be even more vulnerable in comparison to non-private versions.
We study how the main ingredients of differentially private neural networks training, such as gradient clipping and noise addition, affect the robustness of the model.
arXiv Detail & Related papers (2020-12-14T18:59:24Z) - Privacy-preserving medical image analysis [53.4844489668116]
We present PriMIA, a software framework designed for privacy-preserving machine learning (PPML) in medical imaging.
We show significantly better classification performance of a securely aggregated federated learning model compared to human experts on unseen datasets.
We empirically evaluate the framework's security against a gradient-based model inversion attack.
arXiv Detail & Related papers (2020-12-10T13:56:00Z) - Systematic Evaluation of Privacy Risks of Machine Learning Models [41.017707772150835]
We show that prior work on membership inference attacks may severely underestimate the privacy risks.
We first propose to benchmark membership inference privacy risks by improving existing non-neural network based inference attacks.
We then introduce a new approach for fine-grained privacy analysis by formulating and deriving a new metric called the privacy risk score.
arXiv Detail & Related papers (2020-03-24T00:53:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.