Provably Robust Cost-Sensitive Learning via Randomized Smoothing
- URL: http://arxiv.org/abs/2310.08732v2
- Date: Thu, 30 May 2024 09:37:30 GMT
- Title: Provably Robust Cost-Sensitive Learning via Randomized Smoothing
- Authors: Yuan Xin, Michael Backes, Xiao Zhang,
- Abstract summary: We investigate whether randomized smoothing, a scalable framework for robustness certification, can be leveraged to certify and train for cost-sensitive robustness.
We first illustrate how to adapt the standard certification algorithm of randomized smoothing to produce tight robustness certificates for any binary cost matrix.
We then develop a robust training method to promote certified cost-sensitive robustness while maintaining the model's overall accuracy.
- Score: 21.698527267902158
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of robust learning against adversarial perturbations under cost-sensitive scenarios, where the potential harm of different types of misclassifications is encoded in a cost matrix. Existing approaches are either empirical and cannot certify robustness or suffer from inherent scalability issues. In this work, we investigate whether randomized smoothing, a scalable framework for robustness certification, can be leveraged to certify and train for cost-sensitive robustness. Built upon the notion of cost-sensitive certified radius, we first illustrate how to adapt the standard certification algorithm of randomized smoothing to produce tight robustness certificates for any binary cost matrix, and then develop a robust training method to promote certified cost-sensitive robustness while maintaining the model's overall accuracy. Through extensive experiments on image benchmarks, we demonstrate the superiority of our proposed certification algorithm and training method under various cost-sensitive scenarios. Our implementation is available as open source code at: https://github.com/TrustMLRG/CS-RS.
Related papers
- Adaptive Hierarchical Certification for Segmentation using Randomized Smoothing [87.48628403354351]
certification for machine learning is proving that no adversarial sample can evade a model within a range under certain conditions.
Common certification methods for segmentation use a flat set of fine-grained classes, leading to high abstain rates due to model uncertainty.
We propose a novel, more practical setting, which certifies pixels within a multi-level hierarchy, and adaptively relaxes the certification to a coarser level for unstable components.
arXiv Detail & Related papers (2024-02-13T11:59:43Z) - Towards Certified Probabilistic Robustness with High Accuracy [3.957941698534126]
Adrial examples pose a security threat to many critical systems built on neural networks.
How to build certifiably robust yet accurate neural network models remains an open problem.
We propose a novel approach that aims to achieve both high accuracy and certified probabilistic robustness.
arXiv Detail & Related papers (2023-09-02T09:39:47Z) - Incremental Randomized Smoothing Certification [5.971462597321995]
We show how to reuse the certification guarantees for the original smoothed model to certify an approximated model with very few samples.
We experimentally demonstrate the effectiveness of our approach, showing up to 3x certification speedup over the certification that applies randomized smoothing of the approximate model from scratch.
arXiv Detail & Related papers (2023-05-31T03:11:15Z) - Confidence-aware Training of Smoothed Classifiers for Certified
Robustness [75.95332266383417]
We use "accuracy under Gaussian noise" as an easy-to-compute proxy of adversarial robustness for an input.
Our experiments show that the proposed method consistently exhibits improved certified robustness upon state-of-the-art training methods.
arXiv Detail & Related papers (2022-12-18T03:57:12Z) - SmoothMix: Training Confidence-calibrated Smoothed Classifiers for
Certified Robustness [61.212486108346695]
We propose a training scheme, coined SmoothMix, to control the robustness of smoothed classifiers via self-mixup.
The proposed procedure effectively identifies over-confident, near off-class samples as a cause of limited robustness.
Our experimental results demonstrate that the proposed method can significantly improve the certified $ell$-robustness of smoothed classifiers.
arXiv Detail & Related papers (2021-11-17T18:20:59Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Certified Distributional Robustness on Smoothed Classifiers [27.006844966157317]
We propose the worst-case adversarial loss over input distributions as a robustness certificate.
By exploiting duality and the smoothness property, we provide an easy-to-compute upper bound as a surrogate for the certificate.
arXiv Detail & Related papers (2020-10-21T13:22:25Z) - Consistency Regularization for Certified Robustness of Smoothed
Classifiers [89.72878906950208]
A recent technique of randomized smoothing has shown that the worst-case $ell$-robustness can be transformed into the average-case robustness.
We found that the trade-off between accuracy and certified robustness of smoothed classifiers can be greatly controlled by simply regularizing the prediction consistency over noise.
arXiv Detail & Related papers (2020-06-07T06:57:43Z) - Deep Learning based Frameworks for Handling Imbalance in DGA, Email, and
URL Data Analysis [2.2901908285413413]
In this paper, we propose cost-sensitive deep learning based frameworks and the performance of the frameworks is evaluated.
Various experiments were performed using cost-insensitive as well as cost-sensitive methods.
In all experiments, the cost-sensitive deep learning methods performed better than the cost-insensitive approaches.
arXiv Detail & Related papers (2020-03-31T00:22:25Z) - Regularized Training and Tight Certification for Randomized Smoothed
Classifier with Provable Robustness [15.38718018477333]
We derive a new regularized risk, in which the regularizer can adaptively encourage the accuracy and robustness of the smoothed counterpart.
We also design a new certification algorithm, which can leverage the regularization effect to provide tighter robustness lower bound that holds with high probability.
arXiv Detail & Related papers (2020-02-17T20:54:34Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
Machine learning algorithms are susceptible to data poisoning attacks.
We present a unifying view of randomized smoothing over arbitrary functions.
We propose a new strategy for building classifiers that are pointwise-certifiably robust to general data poisoning attacks.
arXiv Detail & Related papers (2020-02-07T21:28:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.