論文の概要: DDMT: Denoising Diffusion Mask Transformer Models for Multivariate Time
Series Anomaly Detection
- arxiv url: http://arxiv.org/abs/2310.08800v2
- Date: Mon, 30 Oct 2023 06:23:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 22:28:22.479248
- Title: DDMT: Denoising Diffusion Mask Transformer Models for Multivariate Time
Series Anomaly Detection
- Title(参考訳): DDMT:多変量時系列異常検出のための拡散マスク変換器モデル
- Authors: Chaocheng Yang and Tingyin Wang and Xuanhui Yan
- Abstract要約: 本稿では,Adaptive Dynamic Neighbor Mask (ADNM) 機構を導入し,それをTransformer and Denoising Diffusion Modelと統合する。
ADNMモジュールは、データ再構成中に入力と出力の特徴間の情報漏洩を軽減するために導入された。
Denoising Diffusion Transformer (DDT)は、Denoising Diffusion Modelのための内部ニューラルネットワーク構造としてTransformerを使用している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection in multivariate time series has emerged as a crucial
challenge in time series research, with significant research implications in
various fields such as fraud detection, fault diagnosis, and system state
estimation. Reconstruction-based models have shown promising potential in
recent years for detecting anomalies in time series data. However, due to the
rapid increase in data scale and dimensionality, the issues of noise and Weak
Identity Mapping (WIM) during time series reconstruction have become
increasingly pronounced. To address this, we introduce a novel Adaptive Dynamic
Neighbor Mask (ADNM) mechanism and integrate it with the Transformer and
Denoising Diffusion Model, creating a new framework for multivariate time
series anomaly detection, named Denoising Diffusion Mask Transformer (DDMT).
The ADNM module is introduced to mitigate information leakage between input and
output features during data reconstruction, thereby alleviating the problem of
WIM during reconstruction. The Denoising Diffusion Transformer (DDT) employs
the Transformer as an internal neural network structure for Denoising Diffusion
Model. It learns the stepwise generation process of time series data to model
the probability distribution of the data, capturing normal data patterns and
progressively restoring time series data by removing noise, resulting in a
clear recovery of anomalies. To the best of our knowledge, this is the first
model that combines Denoising Diffusion Model and the Transformer for
multivariate time series anomaly detection. Experimental evaluations were
conducted on five publicly available multivariate time series anomaly detection
datasets. The results demonstrate that the model effectively identifies
anomalies in time series data, achieving state-of-the-art performance in
anomaly detection.
- Abstract(参考訳): 多変量時系列における異常検出は時系列研究において重要な課題として現れており、不正検出、故障診断、システム状態推定など様々な分野で重要な研究が行われている。
再構成に基づくモデルは近年,時系列データの異常検出に有望な可能性を示している。
しかし,データ規模や次元の急激な増加により,時系列再構成におけるノイズ・弱同一性マッピング(WIM)の問題がますます顕著になっている。
そこで我々は,Adaptive Dynamic Neighbor Mask (ADNM) 機構を導入し,それを Transformer and Denoising Diffusion Model に統合し,多変量時系列異常検出のための新しいフレームワークである Denoising Diffusion Mask Transformer (DDMT) を開発した。
ADNMモジュールは、データ再構成時に入力と出力の特徴間の情報漏洩を軽減し、再構築時にWIMの問題を軽減する。
Denoising Diffusion Transformer (DDT)は、Denoising Diffusion Modelのための内部ニューラルネットワーク構造としてTransformerを使用している。
時系列データの段階的生成過程を学習し、データの確率分布をモデル化し、正常なデータパターンをキャプチャし、ノイズを除去して時系列データを段階的に復元し、異常の明確な回復をもたらす。
我々の知る限り、これは多変量時系列異常検出のためのデノイング拡散モデルと変換器を組み合わせた最初のモデルである。
5種類の多変量時系列異常検出データセットを用いて実験を行った。
その結果, 時系列データの異常を効果的に識別し, 異常検出時の最先端性能を実現することができた。
関連論文リスト
- Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
コンピュータビジョンやバイオメディカルデータなどの信号に対する機械学習の応用は、ハードウェアデバイスやセッション記録にまたがる変動のため、しばしば課題に直面している。
本研究では,これらの変動を緩和するために,時空間モンジュアライメント(STMA)を提案する。
我々はSTMAが、非常に異なる設定で取得したデータセット間で、顕著で一貫したパフォーマンス向上をもたらすことを示す。
論文 参考訳(メタデータ) (2024-07-19T13:33:38Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
製造業において異常検査が重要な役割を担っている。
既存の異常検査手法は、異常データが不足しているため、その性能に制限がある。
本稿では,新しい拡散型マイクロショット異常生成モデルであるAnomalyDiffusionを提案する。
論文 参考訳(メタデータ) (2023-12-10T05:13:40Z) - AnomalyBERT: Self-Supervised Transformer for Time Series Anomaly
Detection using Data Degradation Scheme [0.7216399430290167]
時系列、特にラベルなしデータに対する異常検出タスクは、難しい問題である。
自己教師型モデルトレーニングに適切なデータ劣化スキームを適用することで、この問題に対処する。
自己認識機構に触発されて、時間的文脈を認識するトランスフォーマーベースのアーキテクチャを設計する。
論文 参考訳(メタデータ) (2023-05-08T05:42:24Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Robust Audio Anomaly Detection [10.75127981612396]
提案されたアプローチは、トレーニングデータセットにラベル付き異常が存在することを前提としません。
時間力学は、注意機構を付加した繰り返し層を用いてモデル化される。
ネットワークの出力は、外向きの頑健な確率密度関数である。
論文 参考訳(メタデータ) (2022-02-03T17:19:42Z) - Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals [10.866594993485226]
本稿では,Deep Convolutional Autoencoding Memory Network (CAE-M) という,ディープラーニングに基づく新しい異常検出アルゴリズムを提案する。
我々はまず,最大平均離散値(MMD)を用いたマルチセンサデータの空間依存性を特徴付けるディープ畳み込みオートエンコーダを構築する。
そして,線形(自己回帰モデル)と非線形予測(注意を伴う大規模LSTM)からなるメモリネットワークを構築し,時系列データから時間依存性を捉える。
論文 参考訳(メタデータ) (2021-07-27T06:48:20Z) - HIFI: Anomaly Detection for Multivariate Time Series with High-order
Feature Interactions [7.016615391171876]
HIFIは自動的に多変量特徴相互作用グラフを構築し、グラフ畳み込みニューラルネットワークを使用して高次特徴相互作用を実現する。
3つの公開データセットの実験は、最先端のアプローチと比較して、我々のフレームワークの優位性を示している。
論文 参考訳(メタデータ) (2021-06-11T04:57:03Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - Data Anomaly Detection for Structural Health Monitoring of Bridges using
Shapelet Transform [0.0]
多くの構造健康モニタリング(SHM)システムが、土木インフラを監視するために配備されている。
SHMシステムによって測定されたデータは、故障または故障したセンサーによって引き起こされる複数の異常によって影響を受ける傾向にある。
本稿では,SHMデータの異常を自律的に識別するために,Shapelet Transformという比較的新しい時系列表現を提案する。
論文 参考訳(メタデータ) (2020-08-31T01:11:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。