Two-Stage Deep Learning Framework for Quality Assessment of Left Atrial
Late Gadolinium Enhanced MRI Images
- URL: http://arxiv.org/abs/2310.08805v1
- Date: Fri, 13 Oct 2023 01:27:36 GMT
- Title: Two-Stage Deep Learning Framework for Quality Assessment of Left Atrial
Late Gadolinium Enhanced MRI Images
- Authors: K M Arefeen Sultan, Benjamin Orkild, Alan Morris, Eugene Kholmovski,
Erik Bieging, Eugene Kwan, Ravi Ranjan, Ed DiBella, Shireen Elhabian
- Abstract summary: We propose a two-stage deep-learning approach for automated LGE-MRI image diagnostic quality assessment.
The method includes a left atrium detector to focus on relevant regions and a deep network to evaluate diagnostic quality.
- Score: 0.22585387137796725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate assessment of left atrial fibrosis in patients with atrial
fibrillation relies on high-quality 3D late gadolinium enhancement (LGE) MRI
images. However, obtaining such images is challenging due to patient motion,
changing breathing patterns, or sub-optimal choice of pulse sequence
parameters. Automated assessment of LGE-MRI image diagnostic quality is
clinically significant as it would enhance diagnostic accuracy, improve
efficiency, ensure standardization, and contributes to better patient outcomes
by providing reliable and high-quality LGE-MRI scans for fibrosis
quantification and treatment planning. To address this, we propose a two-stage
deep-learning approach for automated LGE-MRI image diagnostic quality
assessment. The method includes a left atrium detector to focus on relevant
regions and a deep network to evaluate diagnostic quality. We explore two
training strategies, multi-task learning, and pretraining using contrastive
learning, to overcome limited annotated data in medical imaging. Contrastive
Learning result shows about $4\%$, and $9\%$ improvement in F1-Score and
Specificity compared to Multi-Task learning when there's limited data.
Related papers
- HAMIL-QA: Hierarchical Approach to Multiple Instance Learning for Atrial LGE MRI Quality Assessment [0.21065896965719066]
This study introduces HAMIL-QA, a multiple instance learning (MIL) framework, designed to overcome these obstacles.
Hamil-QA employs a hierarchical bag and sub-bag structure that allows for targeted analysis within sub-bags and aggregates insights at the volume level.
Our experiments show that HAMIL-QA surpasses existing MIL methods and traditional supervised approaches in accuracy, AUROC, and F1-Score on an LGE MRI scan dataset.
arXiv Detail & Related papers (2024-07-09T22:19:21Z) - Deep Few-view High-resolution Photon-counting Extremity CT at Halved Dose for a Clinical Trial [8.393536317952085]
We propose a deep learning-based approach for PCCT image reconstruction at halved dose and doubled speed in a New Zealand clinical trial.
We present a patch-based volumetric refinement network to alleviate the GPU memory limitation, train network with synthetic data, and use model-based iterative refinement to bridge the gap between synthetic and real-world data.
arXiv Detail & Related papers (2024-03-19T00:07:48Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - An Evaluation of Lightweight Deep Learning Techniques in Medical Imaging
for High Precision COVID-19 Diagnostics [0.0]
Decision support systems relax the challenges inherent to the physical examination of images.
Most deep learning algorithms utilised approaches are not amenable to implementation on resource-constrained devices.
This paper presents the development and evaluation of the performance of lightweight deep learning technique for the detection of COVID-19 using the MobileNetV2 model.
arXiv Detail & Related papers (2023-05-30T13:14:03Z) - Using Spatio-Temporal Dual-Stream Network with Self-Supervised Learning
for Lung Tumor Classification on Radial Probe Endobronchial Ultrasound Video [0.0]
During the biopsy process of lung cancer, physicians use real-time ultrasound images to find suitable lesion locations for sampling.
Previous studies have employed 2D convolutional neural networks to effectively differentiate between benign and malignant lung lesions.
This study designs an automatic diagnosis system based on a 3D neural network.
arXiv Detail & Related papers (2023-05-04T10:39:37Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Outlier-based Autism Detection using Longitudinal Structural MRI [6.311381904410801]
This paper proposes structural Magnetic Resonance Imaging (sMRI)-based Autism Spectrum Disorder diagnosis via an outlier detection approach.
Generative Adversarial Network (GAN) is trained exclusively with sMRI scans of healthy subjects.
Experiments reveal that our ASD detection framework performs comparably with the state-of-the-art with far fewer training data.
arXiv Detail & Related papers (2022-02-21T04:37:25Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.