A Unifying Quantum Speed Limit For Time-Independent Hamiltonian Evolution
- URL: http://arxiv.org/abs/2310.08813v2
- Date: Thu, 16 May 2024 01:05:11 GMT
- Title: A Unifying Quantum Speed Limit For Time-Independent Hamiltonian Evolution
- Authors: H. F. Chau, Wenxin Zeng,
- Abstract summary: We show that the Mandelstam-Tamm bound can be obtained by optimizing the Lee-Chau bound over a certain parameter.
We find that if the dimension of the underlying Hilbert space is $lesssim 2000$, our unifying bound optimized over $p$ can be computed accurately in a few minutes.
- Score: 0.3314882635954752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum speed limit (QSL) is the study of fundamental limits on the evolution time of quantum systems. For instance, under the action of a time-independent Hamiltonian, the evolution time between an initial and a final quantum state obeys various mutually complementary lower bounds. They include the Mandelstam-Tamm, Margolus-Levitin, Luo-Zhang, dual ML and Lee-Chau bounds. Here we show that the Mandelstam-Tamm bound can be obtained by optimizing the Lee-Chau bound over a certain parameter. More importantly, we report a QSL that includes all the above bounds as special cases before optimizing over the physically meaningless reference energy level of a quantum system. This unifying bound depends on a certain parameter $p$. For any fixed $p$, we find all pairs of time-independent Hamiltonian and initial pure quantum state that saturate this unifying bound. More importantly, these pairs allow us to compute this bound accurately and efficiently using an oracle that returns certain $p$th moments related to the absolute value of energy of the quantum state. Moreover, this oracle can be simulated by a computationally efficient and accurate algorithm for finite-dimensional quantum systems as well as for certain infinite-dimensional quantum states with bounded and continuous energy spectra. This makes our computational method feasible in a lot of practical situations. We compare the performance of this bound for the case of a fixed $p$ as well as the case of optimizing over $p$ with existing QSLs. We find that if the dimension of the underlying Hilbert space is $\lesssim 2000$, our unifying bound optimized over $p$ can be computed accurately in a few minutes using Mathematica code with just-in-time compilation in a typical desktop. Besides, this optimized unifying QSL is at least as good as all the existing ones combined and can occasionally be a few percent to a few times better.
Related papers
- The Power of Unentangled Quantum Proofs with Non-negative Amplitudes [55.90795112399611]
We study the power of unentangled quantum proofs with non-negative amplitudes, a class which we denote $textQMA+(2)$.
In particular, we design global protocols for small set expansion, unique games, and PCP verification.
We show that QMA(2) is equal to $textQMA+(2)$ provided the gap of the latter is a sufficiently large constant.
arXiv Detail & Related papers (2024-02-29T01:35:46Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Alleviating the quantum Big-$M$ problem [0.237499051649312]
Classically known as the "Big-$M$" problem, it affects the physical energy scale.
We take a systematic, encompassing look at the quantum big-$M$ problem, revealing NP-hardness in finding the optimal $M$.
We propose a practical translation algorithm, based on SDP relaxation, that outperforms previous methods in numerical benchmarks.
arXiv Detail & Related papers (2023-07-19T18:00:05Z) - Quantum Depth in the Random Oracle Model [57.663890114335736]
We give a comprehensive characterization of the computational power of shallow quantum circuits combined with classical computation.
For some problems, the ability to perform adaptive measurements in a single shallow quantum circuit is more useful than the ability to perform many shallow quantum circuits without adaptive measurements.
arXiv Detail & Related papers (2022-10-12T17:54:02Z) - Post-Quantum Zero-Knowledge with Space-Bounded Simulation [8.69082943773532]
We introduce a fine-grained notion of post-quantum zero-knowledge that is more compatible with near-term quantum devices.
For verifiers with logarithmic quantum space $s$ and classical space, we show that $(s,f)$-space-bounded QZK, for $f(s)=2s$, can be achieved.
For verifiers with superlogarithmic quantum space $s$, assuming existence of post-quantum one-way, we show that $(s,f)$-space-bounded QZK protocols, with fully black
arXiv Detail & Related papers (2022-10-12T11:13:56Z) - A lower bound on the space overhead of fault-tolerant quantum computation [51.723084600243716]
The threshold theorem is a fundamental result in the theory of fault-tolerant quantum computation.
We prove an exponential upper bound on the maximal length of fault-tolerant quantum computation with amplitude noise.
arXiv Detail & Related papers (2022-01-31T22:19:49Z) - Calculation of generating function in many-body systems with quantum
computers: technical challenges and use in hybrid quantum-classical methods [0.0]
The generating function of a Hamiltonian $H$ is defined as $F(t)=langle e-itHrangle$, where $t$ is the time and where the expectation value is taken on a given initial quantum state.
We show how the information content of this function can be used a posteriori on classical computers to solve quantum many-body problems.
arXiv Detail & Related papers (2021-04-16T15:44:27Z) - Quantum Power Method by a Superposition of Time-Evolved States [0.9137554315375919]
We show that the number of gates required for approximating $hatcal Hn$ scales linearly in the power and the number of qubits.
Using numerical simulation, we show that the power method can control systematic errors in approximating the Hamiltonian power $hatcal Hn$ for $n$ as large as 100.
arXiv Detail & Related papers (2020-08-09T05:21:25Z) - Quantum Differentially Private Sparse Regression Learning [132.1981461292324]
We devise an efficient quantum differentially private (QDP) Lasso estimator to solve sparse regression tasks.
Last, we exhibit that the QDP Lasso attains a near-optimal utility bound $tildeO(N-2/3)$ with privacy guarantees.
arXiv Detail & Related papers (2020-07-23T10:50:42Z) - Quasi-polynomial time algorithms for free quantum games in bounded
dimension [11.56707165033]
We give a semidefinite program of size $exp(mathcalObig(T12(log2(AT)+log(Q)log(AT))/epsilon2big)) to compute additive $epsilon$-approximations on the values of two-player free games.
We make a connection to the quantum separability problem and employ improved multipartite quantum de Finetti theorems with linear constraints.
arXiv Detail & Related papers (2020-05-18T16:55:08Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.