The Quantum Approximate Optimization Algorithm Can Require Exponential Time to Optimize Linear Functions
- URL: http://arxiv.org/abs/2505.06404v2
- Date: Mon, 26 May 2025 18:23:43 GMT
- Title: The Quantum Approximate Optimization Algorithm Can Require Exponential Time to Optimize Linear Functions
- Authors: Francisco Chicano, Zakaria Abdelmoiz Dahi, Gabriel Luque,
- Abstract summary: We show that QAOA requires exponential time to solve linear functions when the number of layers is less than the number of different coefficients of the linear function $n$.<n>We conjecture that QAOA needs exponential time to find the global optimum of linear functions for any constant value of $p$, and that the runtime is linear only if $p geq n$.
- Score: 1.3108652488669732
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: QAOA is a hybrid quantum-classical algorithm to solve optimization problems in gate-based quantum computers. It is based on a variational quantum circuit that can be interpreted as a discretization of the annealing process that quantum annealers follow to find a minimum energy state of a given Hamiltonian. This ensures that QAOA must find an optimal solution for any given optimization problem when the number of layers, $p$, used in the variational quantum circuit tends to infinity. In practice, the number of layers is usually bounded by a small number. This is a must in current quantum computers of the NISQ era, due to the depth limit of the circuits they can run to avoid problems with decoherence and noise. In this paper, we show mathematical evidence that QAOA requires exponential time to solve linear functions when the number of layers is less than the number of different coefficients of the linear function $n$. We conjecture that QAOA needs exponential time to find the global optimum of linear functions for any constant value of $p$, and that the runtime is linear only if $p \geq n$. We conclude that we need new quantum algorithms to reach quantum supremacy in quantum optimization.
Related papers
- Optimization by Decoded Quantum Interferometry [43.55132675053983]
We introduce a quantum algorithm called Decoded Quantum Interferometry (DQI)<n>For approximating optimal fits to data over finite fields, DQI achieves a better approximation ratio than any time known to us.<n>We demonstrate this by benchmarking on an instance with over 30,000 variables.
arXiv Detail & Related papers (2024-08-15T17:47:42Z) - Calculating response functions of coupled oscillators using quantum phase estimation [40.31060267062305]
We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer.
Our proposed quantum algorithm operates in the standard $s-sparse, oracle-based query access model.
We show that a simple adaptation of our algorithm solves the random glued-trees problem in time.
arXiv Detail & Related papers (2024-05-14T15:28:37Z) - Q-Newton: Hybrid Quantum-Classical Scheduling for Accelerating Neural Network Training with Newton's Gradient Descent [37.59299233291882]
We propose Q-Newton, a hybrid quantum-classical scheduler for accelerating neural network training with Newton's GD.<n>Q-Newton utilizes a streamlined scheduling module that coordinates between quantum and classical linear solvers.<n>Our evaluation showcases the potential for Q-Newton to significantly reduce the total training time compared to commonly used quantum machines.
arXiv Detail & Related papers (2024-04-30T23:55:03Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Single-Layer Digitized-Counterdiabatic Quantum Optimization for $p$-spin
Models [8.463477025989542]
We take advantage of a digitized-counterdiabatic quantum optimization (DCQO) algorithm to find an optimal solution of the $p$-spin model up to 4-local interactions.
By further optimizing parameters using variational methods, we solve with unit accuracy 2-spin, 3-spin, and 4-spin problems for $100%$, $93%$, and $83%$ of instances, respectively.
arXiv Detail & Related papers (2023-11-11T22:49:16Z) - Quantum Dueling: an Efficient Solution for Combinatorial Optimization [3.7398607565670536]
We present a new algorithm for generic optimization, which we term quantum dueling.
Quantum dueling innovates by integrating an additional qubit register, effectively creating a dueling'' scenario where two sets of solutions compete.
Our work demonstrates that increasing the number of qubits allows the development of previously unthought-of algorithms, paving the way for advancement of efficient quantum algorithm design.
arXiv Detail & Related papers (2023-02-20T18:33:55Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Efficient Use of Quantum Linear System Algorithms in Interior Point
Methods for Linear Optimization [0.0]
We develop an Inexact Infeasible Quantum Interior Point Method to solve linear optimization problems.
We also discuss how can we get an exact solution by Iterative Refinement without excessive time of quantum solvers.
arXiv Detail & Related papers (2022-05-02T21:30:56Z) - Quantum State Preparation with Optimal Circuit Depth: Implementations
and Applications [10.436969366019015]
We show that any $Theta(n)$-depth circuit can be prepared with a $Theta(log(nd)) with $O(ndlog d)$ ancillary qubits.
We discuss applications of the results in different quantum computing tasks, such as Hamiltonian simulation, solving linear systems of equations, and realizing quantum random access memories.
arXiv Detail & Related papers (2022-01-27T13:16:30Z) - Efficient Classical Computation of Quantum Mean Values for Shallow QAOA
Circuits [15.279642278652654]
We present a novel graph decomposition based classical algorithm that scales linearly with the number of qubits for the shallow QAOA circuits.
Our results are not only important for the exploration of quantum advantages with QAOA, but also useful for the benchmarking of NISQ processors.
arXiv Detail & Related papers (2021-12-21T12:41:31Z) - Estimating Gibbs partition function with quantumClifford sampling [6.656454497798153]
We develop a hybrid quantum-classical algorithm to estimate the partition function.
Our algorithm requires only a shallow $mathcalO(1)$-depth quantum circuit.
Shallow-depth quantum circuits are considered vitally important for currently available NISQ (Noisy Intermediate-Scale Quantum) devices.
arXiv Detail & Related papers (2021-09-22T02:03:35Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.