Semi-Supervised End-To-End Contrastive Learning For Time Series
Classification
- URL: http://arxiv.org/abs/2310.08848v1
- Date: Fri, 13 Oct 2023 04:22:21 GMT
- Title: Semi-Supervised End-To-End Contrastive Learning For Time Series
Classification
- Authors: Huili Cai, Xiang Zhang and Xiaofeng Liu
- Abstract summary: Time series classification is a critical task in various domains, such as finance, healthcare, and sensor data analysis.
We propose an end-to-end model called SLOTS (Semi-supervised Learning fOr Time clasSification)
- Score: 10.635321868623883
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series classification is a critical task in various domains, such as
finance, healthcare, and sensor data analysis. Unsupervised contrastive
learning has garnered significant interest in learning effective
representations from time series data with limited labels. The prevalent
approach in existing contrastive learning methods consists of two separate
stages: pre-training the encoder on unlabeled datasets and fine-tuning the
well-trained model on a small-scale labeled dataset. However, such two-stage
approaches suffer from several shortcomings, such as the inability of
unsupervised pre-training contrastive loss to directly affect downstream
fine-tuning classifiers, and the lack of exploiting the classification loss
which is guided by valuable ground truth. In this paper, we propose an
end-to-end model called SLOTS (Semi-supervised Learning fOr Time
clasSification). SLOTS receives semi-labeled datasets, comprising a large
number of unlabeled samples and a small proportion of labeled samples, and maps
them to an embedding space through an encoder. We calculate not only the
unsupervised contrastive loss but also measure the supervised contrastive loss
on the samples with ground truth. The learned embeddings are fed into a
classifier, and the classification loss is calculated using the available true
labels. The unsupervised, supervised contrastive losses and classification loss
are jointly used to optimize the encoder and classifier. We evaluate SLOTS by
comparing it with ten state-of-the-art methods across five datasets. The
results demonstrate that SLOTS is a simple yet effective framework. When
compared to the two-stage framework, our end-to-end SLOTS utilizes the same
input data, consumes a similar computational cost, but delivers significantly
improved performance. We release code and datasets at
https://anonymous.4open.science/r/SLOTS-242E.
Related papers
- Safe Semi-Supervised Contrastive Learning Using In-Distribution Data as Positive Examples [3.4546761246181696]
We propose a self-supervised contrastive learning approach to fully exploit a large amount of unlabeled data.
The results show that self-supervised contrastive learning significantly improves classification accuracy.
arXiv Detail & Related papers (2024-08-03T22:33:13Z) - Scribble-supervised Cell Segmentation Using Multiscale Contrastive
Regularization [9.849498498869258]
Scribble2Label (S2L) demonstrated that using only a handful of scribbles with self-supervised learning can generate accurate segmentation results without full annotation.
In this work, we employ a novel multiscale contrastive regularization term for S2L.
The main idea is to extract features from intermediate layers of the neural network for contrastive loss so that structures at various scales can be effectively separated.
arXiv Detail & Related papers (2023-06-25T06:00:33Z) - Adaptive Negative Evidential Deep Learning for Open-set Semi-supervised Learning [69.81438976273866]
Open-set semi-supervised learning (Open-set SSL) considers a more practical scenario, where unlabeled data and test data contain new categories (outliers) not observed in labeled data (inliers)
We introduce evidential deep learning (EDL) as an outlier detector to quantify different types of uncertainty, and design different uncertainty metrics for self-training and inference.
We propose a novel adaptive negative optimization strategy, making EDL more tailored to the unlabeled dataset containing both inliers and outliers.
arXiv Detail & Related papers (2023-03-21T09:07:15Z) - Self-omics: A Self-supervised Learning Framework for Multi-omics Cancer
Data [4.843654097048771]
Self-Supervised Learning (SSL) methods are typically used to deal with limited labelled data.
We develop a novel pre-training paradigm that consists of various SSL components.
Our approach outperforms the state-of-the-art method in cancer type classification on the TCGA pan-cancer dataset.
arXiv Detail & Related papers (2022-10-03T11:20:12Z) - ADT-SSL: Adaptive Dual-Threshold for Semi-Supervised Learning [68.53717108812297]
Semi-Supervised Learning (SSL) has advanced classification tasks by inputting both labeled and unlabeled data to train a model jointly.
This paper proposes an Adaptive Dual-Threshold method for Semi-Supervised Learning (ADT-SSL)
Experimental results show that the proposed ADT-SSL achieves state-of-the-art classification accuracy.
arXiv Detail & Related papers (2022-05-21T11:52:08Z) - Spacing Loss for Discovering Novel Categories [72.52222295216062]
Novel Class Discovery (NCD) is a learning paradigm, where a machine learning model is tasked to semantically group instances from unlabeled data.
We first characterize existing NCD approaches into single-stage and two-stage methods based on whether they require access to labeled and unlabeled data together.
We devise a simple yet powerful loss function that enforces separability in the latent space using cues from multi-dimensional scaling.
arXiv Detail & Related papers (2022-04-22T09:37:11Z) - Learning from Label Proportions by Learning with Label Noise [30.7933303912474]
Learning from label proportions (LLP) is a weakly supervised classification problem where data points are grouped into bags.
We provide a theoretically grounded approach to LLP based on a reduction to learning with label noise.
Our approach demonstrates improved empirical performance in deep learning scenarios across multiple datasets and architectures.
arXiv Detail & Related papers (2022-03-04T18:52:21Z) - Dash: Semi-Supervised Learning with Dynamic Thresholding [72.74339790209531]
We propose a semi-supervised learning (SSL) approach that uses unlabeled examples to train models.
Our proposed approach, Dash, enjoys its adaptivity in terms of unlabeled data selection.
arXiv Detail & Related papers (2021-09-01T23:52:29Z) - ORDisCo: Effective and Efficient Usage of Incremental Unlabeled Data for
Semi-supervised Continual Learning [52.831894583501395]
Continual learning assumes the incoming data are fully labeled, which might not be applicable in real applications.
We propose deep Online Replay with Discriminator Consistency (ORDisCo) to interdependently learn a classifier with a conditional generative adversarial network (GAN)
We show ORDisCo achieves significant performance improvement on various semi-supervised learning benchmark datasets for SSCL.
arXiv Detail & Related papers (2021-01-02T09:04:14Z) - Boosting the Performance of Semi-Supervised Learning with Unsupervised
Clustering [10.033658645311188]
We show that ignoring labels altogether for whole epochs intermittently during training can significantly improve performance in the small sample regime.
We demonstrate our method's efficacy in boosting several state-of-the-art SSL algorithms.
arXiv Detail & Related papers (2020-12-01T14:19:14Z) - Learning with Out-of-Distribution Data for Audio Classification [60.48251022280506]
We show that detecting and relabelling certain OOD instances, rather than discarding them, can have a positive effect on learning.
The proposed method is shown to improve the performance of convolutional neural networks by a significant margin.
arXiv Detail & Related papers (2020-02-11T21:08:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.