論文の概要: EHI: End-to-end Learning of Hierarchical Index for Efficient Dense
Retrieval
- arxiv url: http://arxiv.org/abs/2310.08891v1
- Date: Fri, 13 Oct 2023 06:53:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-16 14:13:30.878318
- Title: EHI: End-to-end Learning of Hierarchical Index for Efficient Dense
Retrieval
- Title(参考訳): ehi:効率的な高密度検索のための階層型インデックスのエンドツーエンド学習
- Authors: Ramnath Kumar and Anshul Mittal and Nilesh Gupta and Aditya Kusupati
and Inderjit Dhillon and Prateek Jain
- Abstract要約: EHI(End-to-end Hierarchical Indexing)は、組み込みとANNS構造の両方を学び、パフォーマンスを最適化する。
デンスパスの埋め込みは、ツリー内のクエリ/ドキュメントの位置をキャプチャする。
EHIは、MS MARCO開発セットでは0.6%(MRR@10)、TREC DL19ベンチマークでは4.2%(nDCG@10)で最先端(SOTA)を上回っている。
- 参考スコア(独自算出の注目度): 19.239635153206684
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dense embedding-based retrieval is now the industry standard for semantic
search and ranking problems, like obtaining relevant web documents for a given
query. Such techniques use a two-stage process: (a) contrastive learning to
train a dual encoder to embed both the query and documents and (b) approximate
nearest neighbor search (ANNS) for finding similar documents for a given query.
These two stages are disjoint; the learned embeddings might be ill-suited for
the ANNS method and vice-versa, leading to suboptimal performance. In this
work, we propose End-to-end Hierarchical Indexing -- EHI -- that jointly learns
both the embeddings and the ANNS structure to optimize retrieval performance.
EHI uses a standard dual encoder model for embedding queries and documents
while learning an inverted file index (IVF) style tree structure for efficient
ANNS. To ensure stable and efficient learning of discrete tree-based ANNS
structure, EHI introduces the notion of dense path embedding that captures the
position of a query/document in the tree. We demonstrate the effectiveness of
EHI on several benchmarks, including de-facto industry standard MS MARCO (Dev
set and TREC DL19) datasets. For example, with the same compute budget, EHI
outperforms state-of-the-art (SOTA) in by 0.6% (MRR@10) on MS MARCO dev set and
by 4.2% (nDCG@10) on TREC DL19 benchmarks.
- Abstract(参考訳): 密度の高い埋め込みベースの検索は、特定のクエリに対して関連するwebドキュメントを取得するなど、セマンティック検索やランキングの問題の業界標準となっている。
このような技術は2段階のプロセスを使用する。
(a)クエリとドキュメントの両方を埋め込むためにデュアルエンコーダを訓練する対照的な学習
b) 任意のクエリに対して類似した文書を見つけるための近接探索(ANNS)に近似する。
これらの2つの段階は解離し、学習された埋め込みはANNS法と逆転法に不適であり、最適以下の性能をもたらす。
本研究では,組込みとANNS構造の両方を共同で学習し,検索性能を最適化するエンドツーエンド階層インデックス(EHI)を提案する。
ehiは、クエリやドキュメントの埋め込みに標準のデュアルエンコーダモデルを使用し、効率的なannのための逆ファイルインデックス(ivf)スタイルのツリー構造を学習する。
離散木ベースの anns 構造の安定かつ効率的な学習を実現するため、ehi は木内のクエリ/ドキュメントの位置をキャプチャする密閉経路埋め込みの概念を導入している。
本稿では,デファクト業界標準MS MARCO (Dev set と TREC DL19) データセットを含む,いくつかのベンチマークにおけるEHIの有効性を示す。
例えば、同じ計算予算で、EHIはMS MARCO開発セットでは0.6%(MRR@10)、TREC DL19ベンチマークでは4.2%(nDCG@10)で最先端(SOTA)を上回っている。
関連論文リスト
- Adaptive Retrieval and Scalable Indexing for k-NN Search with Cross-Encoders [77.84801537608651]
クエリ-イムペアを共同で符号化することで類似性を計算するクロスエンコーダ(CE)モデルは、クエリ-イム関連性を推定する埋め込みベースモデル(デュアルエンコーダ)よりも優れている。
本稿では,潜時クエリとアイテム埋め込みを効率的に計算してCEスコアを近似し,CE類似度を近似したk-NN探索を行うスパース行列分解法を提案する。
論文 参考訳(メタデータ) (2024-05-06T17:14:34Z) - Semi-Parametric Retrieval via Binary Token Index [71.78109794895065]
Semi-parametric Vocabulary Disentangled Retrieval (SVDR) は、新しい半パラメトリック検索フレームワークである。
既存のニューラル検索手法に似た、高い有効性のための埋め込みベースのインデックスと、従来の用語ベースの検索に似た、迅速かつ費用対効果の高いセットアップを可能にするバイナリトークンインデックスの2つのタイプをサポートする。
埋め込みベースインデックスを使用する場合の高密度検索器DPRよりも3%高いトップ1検索精度と、バイナリトークンインデックスを使用する場合のBM25よりも9%高いトップ1検索精度を実現する。
論文 参考訳(メタデータ) (2024-05-03T08:34:13Z) - Efficient Inverted Indexes for Approximate Retrieval over Learned Sparse Representations [8.796275989527054]
本稿では,学習したスパース埋め込みを高速に検索できる逆インデックスの新たな組織を提案する。
提案手法では,逆リストを幾何学的に結合したブロックに整理し,それぞれに要約ベクトルを備える。
以上の結果から, 地震動は, 最先端の逆インデックスベースソリューションよりも1~2桁高速であることが示唆された。
論文 参考訳(メタデータ) (2024-04-29T15:49:27Z) - Constructing Tree-based Index for Efficient and Effective Dense
Retrieval [26.706985694158384]
JTRは、TReeベースのインデックスとクエリエンコーディングの合同最適化の略である。
我々は、木に基づくインデックスとクエリエンコーダをエンドツーエンドにトレーニングするために、新しい統合されたコントラスト学習損失を設計する。
実験結果から,JTRは高いシステム効率を維持しつつ,検索性能が向上することが示された。
論文 参考訳(メタデータ) (2023-04-24T09:25:39Z) - Improving Dual-Encoder Training through Dynamic Indexes for Negative
Mining [61.09807522366773]
本稿では,ソフトマックスを証明可能な境界で近似し,木を動的に維持するアルゴリズムを提案する。
我々は,2000万以上のターゲットを持つデータセットについて検討し,オラクル・ブルート力負の鉱業に関して,誤差を半分に削減した。
論文 参考訳(メタデータ) (2023-03-27T15:18:32Z) - End-to-End Learning to Index and Search in Large Output Spaces [95.16066833532396]
Extreme Multi-label Classification (XMC) は現実世界の問題を解決するための一般的なフレームワークである。
本稿では,木系インデックスを特殊重み付きグラフベースインデックスに緩和する新しい手法を提案する。
ELIASは、数百万のラベルを持つ大規模極端分類ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-10-16T01:34:17Z) - Hybrid Inverted Index Is a Robust Accelerator for Dense Retrieval [25.402767809863946]
逆ファイル構造は高密度検索を高速化する一般的な手法である。
本研究では,Hybrid Inverted Index (HI$2$)を提案する。
論文 参考訳(メタデータ) (2022-10-11T15:12:41Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
自動回帰言語モデルは、回答を生成するデファクト標準として現れています。
これまでの研究は、探索空間を階層構造に分割する方法を探究してきた。
本研究では,検索空間の任意の構造を強制しない代替として,経路内のすべてのngramを識別子として使用することを提案する。
論文 参考訳(メタデータ) (2022-04-22T10:45:01Z) - SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval [11.38022203865326]
SPLADEモデルは、最先端の高密度かつスパースなアプローチに関して、高度にスパースな表現と競争結果を提供する。
我々は、プール機構を変更し、文書拡張のみに基づいてモデルをベンチマークし、蒸留で訓練されたモデルを導入する。
全体として、SPLADEはTREC DL 2019のNDCG@10で9ドル以上のゲインで大幅に改善され、BEIRベンチマークで最先端の結果が得られた。
論文 参考訳(メタデータ) (2021-09-21T10:43:42Z) - Micro-architectural Analysis of a Learned Index [0.0]
ALEXはツリーベースのインメモリインデックス構造であり、機械学習モデルの階層構造で構成されている。
その結果、ALEXはストールを少なくし、異なるワークロードにまたがるインストラクションあたりのサイクル値が低いことがわかった。
一方、ALEXのアウト・オブ・バウンド・インサートを扱うのに必要な命令の量は、リクエスト毎の命令を著しく増加させる(10X)。
論文 参考訳(メタデータ) (2021-09-17T12:13:06Z) - Towards Improving the Consistency, Efficiency, and Flexibility of
Differentiable Neural Architecture Search [84.4140192638394]
最も微分可能なニューラルアーキテクチャ探索法は、探索用のスーパーネットを構築し、そのサブグラフとしてターゲットネットを導出する。
本稿では,エンジンセルとトランジットセルからなるEnTranNASを紹介する。
また,検索処理の高速化を図るため,メモリや計算コストの削減も図っている。
論文 参考訳(メタデータ) (2021-01-27T12:16:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。