Physics-guided Noise Neural Proxy for Practical Low-light Raw Image
Denoising
- URL: http://arxiv.org/abs/2310.09126v2
- Date: Mon, 22 Jan 2024 13:14:33 GMT
- Title: Physics-guided Noise Neural Proxy for Practical Low-light Raw Image
Denoising
- Authors: Hansen Feng, Lizhi Wang, Yiqi Huang, Yuzhi Wang, Lin Zhu, Hua Huang
- Abstract summary: Recently, the mainstream practice for training low-light raw image denoising has shifted towards employing synthetic data.
Noise modeling, which focuses on characterizing the noise distribution of real-world sensors, profoundly influences the effectiveness and practicality of synthetic data.
We propose a novel strategy: learning the noise model from dark frames instead of paired real data, to break down the data dependency.
- Score: 22.11250276261829
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, the mainstream practice for training low-light raw image denoising
methods has shifted towards employing synthetic data. Noise modeling, which
focuses on characterizing the noise distribution of real-world sensors,
profoundly influences the effectiveness and practicality of synthetic data.
Currently, physics-based noise modeling struggles to characterize the entire
real noise distribution, while learning-based noise modeling impractically
depends on paired real data. In this paper, we propose a novel strategy:
learning the noise model from dark frames instead of paired real data, to break
down the data dependency. Based on this strategy, we introduce an efficient
physics-guided noise neural proxy (PNNP) to approximate the real-world sensor
noise model. Specifically, we integrate physical priors into neural proxies and
introduce three efficient techniques: physics-guided noise decoupling (PND),
physics-guided proxy model (PPM), and differentiable distribution loss (DDL).
PND decouples the dark frame into different components and handles different
levels of noise flexibly, which reduces the complexity of noise modeling. PPM
incorporates physical priors to constrain the generated noise, which promotes
the accuracy of noise modeling. DDL provides explicit and reliable supervision
for noise distribution, which promotes the precision of noise modeling. PNNP
exhibits powerful potential in characterizing the real noise distribution.
Extensive experiments on public datasets demonstrate superior performance in
practical low-light raw image denoising. The code will be available at
\url{https://github.com/fenghansen/PNNP}.
Related papers
- Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Towards General Low-Light Raw Noise Synthesis and Modeling [37.87312467017369]
We introduce a new perspective to synthesize the signal-independent noise by a generative model.
Specifically, we synthesize the signal-dependent and signal-independent noise in a physics- and learning-based manner.
In this way, our method can be considered as a general model, that is, it can simultaneously learn different noise characteristics for different ISO levels.
arXiv Detail & Related papers (2023-07-31T09:10:10Z) - Realistic Noise Synthesis with Diffusion Models [68.48859665320828]
Deep image denoising models often rely on large amount of training data for the high quality performance.
We propose a novel method that synthesizes realistic noise using diffusion models, namely Realistic Noise Synthesize Diffusor (RNSD)
RNSD can incorporate guided multiscale content, such as more realistic noise with spatial correlations can be generated at multiple frequencies.
arXiv Detail & Related papers (2023-05-23T12:56:01Z) - CFNet: Conditional Filter Learning with Dynamic Noise Estimation for
Real Image Denoising [37.29552796977652]
This paper considers real noise approximated by heteroscedastic Gaussian/Poisson Gaussian distributions with in-camera signal processing pipelines.
We propose a novel conditional filter in which the optimal kernels for different feature positions can be adaptively inferred by local features from the image and the noise map.
Also, we bring the thought that alternatively performs noise estimation and non-blind denoising into CNN structure, which continuously updates noise prior to guide the iterative feature denoising.
arXiv Detail & Related papers (2022-11-26T14:28:54Z) - Learning to Generate Realistic Noisy Images via Pixel-level Noise-aware
Adversarial Training [50.018580462619425]
We propose a novel framework, namely Pixel-level Noise-aware Generative Adrial Network (PNGAN)
PNGAN employs a pre-trained real denoiser to map the fake and real noisy images into a nearly noise-free solution space.
For better noise fitting, we present an efficient architecture Simple Multi-versa-scale Network (SMNet) as the generator.
arXiv Detail & Related papers (2022-04-06T14:09:02Z) - Estimating Fine-Grained Noise Model via Contrastive Learning [11.626812663592416]
We propose an innovative noise model estimation and noise synthesis pipeline for realistic noisy image generation.
Our model learns a noise estimation model with fine-grained statistical noise model in a contrastive manner.
By calibrating noise models of several sensors, our model can be extended to predict other cameras.
arXiv Detail & Related papers (2022-04-03T02:35:01Z) - Rethinking Noise Synthesis and Modeling in Raw Denoising [75.55136662685341]
We introduce a new perspective to synthesize noise by directly sampling from the sensor's real noise.
It inherently generates accurate raw image noise for different camera sensors.
arXiv Detail & Related papers (2021-10-10T10:45:24Z) - Physics-based Noise Modeling for Extreme Low-light Photography [63.65570751728917]
We study the noise statistics in the imaging pipeline of CMOS photosensors.
We formulate a comprehensive noise model that can accurately characterize the real noise structures.
Our noise model can be used to synthesize realistic training data for learning-based low-light denoising algorithms.
arXiv Detail & Related papers (2021-08-04T16:36:29Z) - Adaptive noise imitation for image denoising [58.21456707617451]
We develop a new textbfadaptive noise imitation (ADANI) algorithm that can synthesize noisy data from naturally noisy images.
To produce realistic noise, a noise generator takes unpaired noisy/clean images as input, where the noisy image is a guide for noise generation.
Coupling the noisy data output from ADANI with the corresponding ground-truth, a denoising CNN is then trained in a fully-supervised manner.
arXiv Detail & Related papers (2020-11-30T02:49:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.