論文の概要: Graph Neural Network approaches for single-cell data: A recent overview
- arxiv url: http://arxiv.org/abs/2310.09561v1
- Date: Sat, 14 Oct 2023 11:09:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-17 19:42:22.949181
- Title: Graph Neural Network approaches for single-cell data: A recent overview
- Title(参考訳): 単一セルデータに対するグラフニューラルネットワークのアプローチ:最近の展望
- Authors: Konstantinos Lazaros, Dimitris E. Koumadorakis, Panagiotis Vlamos,
Aristidis G. Vrahatis
- Abstract要約: グラフニューラルネットワーク(GNN)は、遺伝子と細胞間の深いつながりを明らかにすることで、生医学と病気の理解を再構築している。
近年,シングルセルデータに適したGNN手法が注目されている。
このレビューは、GNNがシングルセル分析の中心となる未来を予測している。
- 参考スコア(独自算出の注目度): 0.3277163122167433
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNN) are reshaping our understanding of biomedicine
and diseases by revealing the deep connections among genes and cells. As both
algorithmic and biomedical technologies have advanced significantly, we're
entering a transformative phase of personalized medicine. While pioneering
tools like Graph Attention Networks (GAT) and Graph Convolutional Neural
Networks (Graph CNN) are advancing graph-based learning, the rise of
single-cell sequencing techniques is reshaping our insights on cellular
diversity and function. Numerous studies have combined GNNs with single-cell
data, showing promising results. In this work, we highlight the GNN
methodologies tailored for single-cell data over the recent years. We outline
the diverse range of graph deep learning architectures that center on GAT
methodologies. Furthermore, we underscore the several objectives of GNN
strategies in single-cell data contexts, ranging from cell-type annotation,
data integration and imputation, gene regulatory network reconstruction,
clustering and many others. This review anticipates a future where GNNs become
central to single-cell analysis efforts, particularly as vast omics datasets
are continuously generated and the interconnectedness of cells and genes
enhances our depth of knowledge in biomedicine.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、遺伝子と細胞間の深いつながりを明らかにすることで、生医学と病気の理解を再構築している。
アルゴリズムとバイオメディカルの技術はどちらも大きく進歩しているので、パーソナライズされた医療の転換段階に入りつつある。
graph attention networks(gat)やgraph convolutional neural networks(graph cnn)といった先駆的なツールがグラフベースの学習を前進させている一方で、シングルセルシーケンシング技術の台頭は、細胞の多様性と機能に関する洞察を再構築している。
多くの研究がGNNとシングルセルデータを組み合わせて、有望な結果を示している。
本稿では,近年のシングルセルデータに適したGNN手法について紹介する。
GAT方法論を中心とした多種多様なグラフ深層学習アーキテクチャについて概説する。
さらに、細胞型アノテーション、データ統合とインプット、遺伝子制御ネットワーク再構築、クラスタリングなど、単一セルデータコンテキストにおけるGNN戦略のいくつかの目的を概観する。
このレビューは、GNNが単一細胞分析の取り組みの中心となる未来を予測しており、特に巨大なオミクスデータセットが連続的に生成され、細胞と遺伝子の相互接続性が生医学における知識の深みを高める。
関連論文リスト
- Analysis of Gene Regulatory Networks from Gene Expression Using Graph Neural Networks [0.4369058206183195]
本研究では、遺伝子制御ネットワーク(GRN)のようなグラフ構造化データをモデリングするための強力なアプローチであるグラフニューラルネットワーク(GNN)の利用について検討する。
規制相互作用を正確に予測し、キーレギュレータをピンポイントするモデルの有効性は、高度な注意機構に起因している。
GNNのGRN研究への統合は、パーソナライズド医療、薬物発見、生物学的システムの把握における先駆的な発展を目標としている。
論文 参考訳(メタデータ) (2024-09-20T17:16:14Z) - Cell Graph Transformer for Nuclei Classification [78.47566396839628]
我々は,ノードとエッジを入力トークンとして扱うセルグラフ変換器(CGT)を開発した。
不愉快な特徴は、騒々しい自己注意スコアと劣等な収束につながる可能性がある。
グラフ畳み込みネットワーク(GCN)を利用して特徴抽出器を学習する新しいトポロジ対応事前学習法を提案する。
論文 参考訳(メタデータ) (2024-02-20T12:01:30Z) - scBiGNN: Bilevel Graph Representation Learning for Cell Type
Classification from Single-cell RNA Sequencing Data [62.87454293046843]
グラフニューラルネットワーク(GNN)は、セルタイプの自動分類に広く利用されている。
scBiGNNは2つのGNNモジュールから構成され、細胞型を識別する。
scBiGNNは、scRNA-seqデータから細胞型分類のための様々な方法より優れている。
論文 参考訳(メタデータ) (2023-12-16T03:54:26Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - A Systematic Review of Deep Graph Neural Networks: Challenges,
Classification, Architectures, Applications & Potential Utility in
Bioinformatics [0.0]
グラフニューラルネットワーク(GNN)は、グラフ依存を表現するためにグラフノード間のメッセージ送信を使用する。
GNNは、バイオインフォマティクス研究における幅広い生物学的課題を解決するための優れたツールとなる可能性がある。
論文 参考訳(メタデータ) (2023-11-03T10:25:47Z) - Compact & Capable: Harnessing Graph Neural Networks and Edge Convolution
for Medical Image Classification [0.0]
本稿では,重要なグラフノード間の接続を強く表現するために,RGBチャネルの特徴値の相互接続性を活用し,GNNとエッジ畳み込みを組み合わせた新しいモデルを提案する。
提案モデルでは,最新のDeep Neural Networks (DNN) と同等に動作するが,1000倍のパラメータが減少し,トレーニング時間とデータ要求が短縮される。
論文 参考訳(メタデータ) (2023-07-24T13:39:21Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
不均一グラフニューラルネットワーク(HGNN)は、不均一グラフの豊富な構造的および意味的な情報をノード表現に埋め込む強力な能力を持つ。
既存のHGNNは、同種グラフ上のグラフニューラルネットワーク(GNN)から多くのメカニズム、特に注意機構と多層構造を継承する。
本稿では,これらのメカニズムを詳細に検討し,簡便かつ効率的なヘテロジニアスグラフニューラルネットワーク(SeHGNN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T10:01:46Z) - Heterogeneous Graph based Deep Learning for Biomedical Network Link
Prediction [7.628651624423363]
バイオメディカルネットワークリンクを予測するためのグラフペアベースのリンク予測モデル(GPLP)を提案する。
InPでは、既知のネットワーク相互作用行列から抽出された1ホップのサブグラフを学習し、欠落リンクを予測する。
本手法は他のバイオメディカルネットワークにおける潜在的な応用を実証する。
論文 参考訳(メタデータ) (2021-01-28T07:35:29Z) - Heterogeneous Similarity Graph Neural Network on Electronic Health
Records [74.66674469510251]
非均質な類似度グラフニューラルネットワーク(HSGNN)を提案し、新しい異種GNNでEHRを分析します。
フレームワークは2つの部分から構成される: 1つは前処理方式で、もう1つはエンドツーエンドのGNNである。
GNNは全ての同質グラフを入力として取り、それら全てを1つのグラフに融合して予測する。
論文 参考訳(メタデータ) (2021-01-17T23:14:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。