論文の概要: Analysis of Gene Regulatory Networks from Gene Expression Using Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2409.13664v1
- Date: Fri, 20 Sep 2024 17:16:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 06:08:43.881168
- Title: Analysis of Gene Regulatory Networks from Gene Expression Using Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークを用いた遺伝子発現からの遺伝子制御ネットワークの解析
- Authors: Hakan T. Otal, Abdulhamit Subasi, Furkan Kurt, M. Abdullah Canbaz, Yasin Uzun,
- Abstract要約: 本研究では、遺伝子制御ネットワーク(GRN)のようなグラフ構造化データをモデリングするための強力なアプローチであるグラフニューラルネットワーク(GNN)の利用について検討する。
規制相互作用を正確に予測し、キーレギュレータをピンポイントするモデルの有効性は、高度な注意機構に起因している。
GNNのGRN研究への統合は、パーソナライズド医療、薬物発見、生物学的システムの把握における先駆的な発展を目標としている。
- 参考スコア(独自算出の注目度): 0.4369058206183195
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Unraveling the complexities of Gene Regulatory Networks (GRNs) is crucial for understanding cellular processes and disease mechanisms. Traditional computational methods often struggle with the dynamic nature of these networks. This study explores the use of Graph Neural Networks (GNNs), a powerful approach for modeling graph-structured data like GRNs. Utilizing a Graph Attention Network v2 (GATv2), our study presents a novel approach to the construction and interrogation of GRNs, informed by gene expression data and Boolean models derived from literature. The model's adeptness in accurately predicting regulatory interactions and pinpointing key regulators is attributed to advanced attention mechanisms, a hallmark of the GNN framework. These insights suggest that GNNs are primed to revolutionize GRN analysis, addressing traditional limitations and offering richer biological insights. The success of GNNs, as highlighted by our model's reliance on high-quality data, calls for enhanced data collection methods to sustain progress. The integration of GNNs in GRN research is set to pioneer developments in personalized medicine, drug discovery, and our grasp of biological systems, bolstered by the structural analysis of networks for improved node and edge prediction.
- Abstract(参考訳): 遺伝子調節ネットワーク(GRN)の複雑さの解明は、細胞プロセスや疾患のメカニズムを理解する上で重要である。
伝統的な計算手法は、しばしばこれらのネットワークの動的な性質に苦しむ。
本研究では、GRNのようなグラフ構造化データをモデリングするための強力なアプローチであるグラフニューラルネットワーク(GNN)の利用について検討する。
本研究は,グラフ注意ネットワーク v2 (GATv2) を用いて,表現データと文献由来のブールモデルを用いて,GRNの構築と取調べに新たなアプローチを提案する。
規制相互作用を正確に予測し、キーレギュレータをピンポイントするモデルの有効性は、GNNフレームワークの目印である高度な注意機構に起因している。
これらの知見は、GNNがGRN分析に革命をもたらし、従来の制限に対処し、より豊かな生物学的洞察を提供することを示唆している。
GNNの成功は、我々のモデルが高品質なデータに依存していることが強調されているように、進歩を維持するために強化されたデータ収集方法を求めている。
GRN研究におけるGNNの統合は、パーソナライズド医薬品、薬物発見、および我々の生物学的システムの把握における先駆的な発展を目標とし、ノードとエッジの予測を改善するネットワークの構造解析によって促進される。
関連論文リスト
- Attentional Graph Neural Networks for Robust Massive Network
Localization [20.416879207269446]
グラフニューラルネットワーク(GNN)は、機械学習における分類タスクの顕著なツールとして登場した。
本稿では,GNNとアテンション機構を統合し,ネットワークローカライゼーションという難解な非線形回帰問題に対処する。
我々はまず,厳密な非視線(NLOS)条件下でも例外的な精度を示すグラフ畳み込みネットワーク(GCN)に基づく新しいネットワークローカライゼーション手法を提案する。
論文 参考訳(メタデータ) (2023-11-28T15:05:13Z) - Stability Analysis of Non-Linear Classifiers using Gene Regulatory
Neural Network for Biological AI [2.0755366440393743]
二重層転写翻訳化学反応モデルを用いた遺伝子パーセプトロンの数学的モデルを構築した。
我々は全接続GRNNサブネットワーク内の各遺伝子パーセプトロンの安定性解析を行い、時間的および安定した濃度出力を決定する。
論文 参考訳(メタデータ) (2023-09-14T21:37:38Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
本稿では,従来のGCNフィルタと幾何散乱変換を用いて定義された帯域通過フィルタを組み合わせたハイブリッドグラフニューラルネットワーク(GNN)フレームワークを提案する。
理論的には, グラフからの構造情報を活用するために散乱フィルタの相補的な利点が確立され, 実験では様々な学習課題における手法の利点が示された。
論文 参考訳(メタデータ) (2022-01-22T00:47:41Z) - Prediction of gene expression time series and structural analysis of
gene regulatory networks using recurrent neural networks [0.0]
この作業は、RNNの注意機構を理解し、活用する方法を提供する。
遺伝子発現データから時系列予測とGRNの推測を行うRNNベースの手法への道を開く。
論文 参考訳(メタデータ) (2021-09-13T10:30:21Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2020-10-06T01:20:27Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
本稿では,新しい階層型メッセージパッシンググラフニューラルネットワークフレームワークを提案する。
鍵となるアイデアは、フラットグラフ内のすべてのノードをマルチレベルなスーパーグラフに再編成する階層構造を生成することである。
階層型コミュニティ対応グラフニューラルネットワーク(HC-GNN)と呼ばれる,このフレームワークを実装した最初のモデルを提案する。
論文 参考訳(メタデータ) (2020-09-08T13:11:07Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
低次元問題に対する高密度固定グラフ上のGNNと高次元問題に対するサンプリングベースGNNの2つの手法を提案する。
RRT(Rapidly-Exploring Random Trees)におけるクリティカルノードの特定やサンプリング分布の学習といった計画上の問題にGNNが取り組む能力について検討する。
臨界サンプリング、振り子、6つのDoFロボットアームによる実験では、GNNは従来の分析手法の改善だけでなく、完全に接続されたニューラルネットワークや畳み込みニューラルネットワークを用いた学習アプローチも示している。
論文 参考訳(メタデータ) (2020-06-11T08:19:06Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。