Generative artificial intelligence for de novo protein design
- URL: http://arxiv.org/abs/2310.09685v1
- Date: Sun, 15 Oct 2023 00:02:22 GMT
- Title: Generative artificial intelligence for de novo protein design
- Authors: Adam Winnifrith, Carlos Outeiral and Brian Hie
- Abstract summary: Generative architectures seem adept at generating novel, yet realistic proteins.
Design protocols now achieve experimental success rates nearing 20%.
Despite extensive progress, there are clear field-wide challenges.
- Score: 1.2021565114959365
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Engineering new molecules with desirable functions and properties has the
potential to extend our ability to engineer proteins beyond what nature has so
far evolved. Advances in the so-called "de novo" design problem have recently
been brought forward by developments in artificial intelligence. Generative
architectures, such as language models and diffusion processes, seem adept at
generating novel, yet realistic proteins that display desirable properties and
perform specified functions. State-of-the-art design protocols now achieve
experimental success rates nearing 20%, thus widening the access to de novo
designed proteins. Despite extensive progress, there are clear field-wide
challenges, for example in determining the best in silico metrics to prioritise
designs for experimental testing, and in designing proteins that can undergo
large conformational changes or be regulated by post-translational
modifications and other cellular processes. With an increase in the number of
models being developed, this review provides a framework to understand how
these tools fit into the overall process of de novo protein design. Throughout,
we highlight the power of incorporating biochemical knowledge to improve
performance and interpretability.
Related papers
- Enhancing Protein Predictive Models via Proteins Data Augmentation: A
Benchmark and New Directions [58.819567030843025]
This paper extends data augmentation techniques previously used for images and texts to proteins and then benchmarks these techniques on a variety of protein-related tasks.
We propose two novel semantic-level protein augmentation methods, namely Integrated Gradients Substitution and Back Translation Substitution.
Finally, we integrate extended and proposed augmentations into an augmentation pool and propose a simple but effective framework, namely Automated Protein Augmentation (APA)
arXiv Detail & Related papers (2024-03-01T07:58:29Z) - A Latent Diffusion Model for Protein Structure Generation [50.74232632854264]
We propose a latent diffusion model that can reduce the complexity of protein modeling.
We show that our method can effectively generate novel protein backbone structures with high designability and efficiency.
arXiv Detail & Related papers (2023-05-06T19:10:19Z) - Protein Sequence Design with Batch Bayesian Optimisation [0.0]
Protein sequence design is a challenging problem in protein engineering, which aims to discover novel proteins with useful biological functions.
directed evolution is a widely-used approach for protein sequence design, which mimics the evolution cycle in a laboratory environment and conducts an iterative protocol.
We propose a new method based on Batch Bayesian Optimization (Batch BO), a well-established optimization method, for protein sequence design.
arXiv Detail & Related papers (2023-03-18T14:53:20Z) - Structure-informed Language Models Are Protein Designers [69.70134899296912]
We present LM-Design, a generic approach to reprogramming sequence-based protein language models (pLMs)
We conduct a structural surgery on pLMs, where a lightweight structural adapter is implanted into pLMs and endows it with structural awareness.
Experiments show that our approach outperforms the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2023-02-03T10:49:52Z) - Generating Novel, Designable, and Diverse Protein Structures by
Equivariantly Diffusing Oriented Residue Clouds [0.0]
Structure-based protein design aims to find structures that are designable, novel, and diverse.
Generative models provide a compelling alternative, by implicitly learning the low-dimensional structure of complex data.
We develop Genie, a generative model of protein structures that performs discrete-time diffusion using a cloud of oriented reference frames in 3D space.
arXiv Detail & Related papers (2023-01-29T16:44:19Z) - Plug & Play Directed Evolution of Proteins with Gradient-based Discrete
MCMC [1.0499611180329804]
A long-standing goal of machine-learning-based protein engineering is to accelerate the discovery of novel mutations.
We introduce a sampling framework for evolving proteins in silico that supports mixing and matching a variety of unsupervised models.
By composing these models, we aim to improve our ability to evaluate unseen mutations and constrain search to regions of sequence space likely to contain functional proteins.
arXiv Detail & Related papers (2022-12-20T00:26:23Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
This work focuses on learning a generative neural network on a structural ensemble of a drug-target protein.
Model tasks involve characterizing the distinct structural fluctuations of the protein bound to various drug molecules.
Results show that our geometric learning-based method enjoys both accuracy and efficiency for generating complex structural variations.
arXiv Detail & Related papers (2022-05-20T19:38:00Z) - Using Genetic Programming to Predict and Optimize Protein Function [65.25258357832584]
We propose POET, a computational Genetic Programming tool based on evolutionary methods to enhance screening and mutagenesis in Directed Evolution.
As a proof-of-concept we use peptides that generate MRI contrast detected by the Chemical Exchange Saturation Transfer mechanism.
Our results indicate that a computational modelling tool like POET can help to find peptides with 400% better functionality than used before.
arXiv Detail & Related papers (2022-02-08T18:08:08Z) - PDBench: Evaluating Computational Methods for Protein Sequence Design [2.0187324832551385]
We present a benchmark set of proteins and propose tests to assess the performance of deep learning based methods.
Our robust benchmark provides biological insight into the behaviour of design methods, which is essential for evaluating their performance and utility.
arXiv Detail & Related papers (2021-09-16T12:20:03Z) - Deep Generative Modeling for Protein Design [0.0]
Deep learning approaches have produced breakthroughs in fields such as image classification and natural language processing.
generative models of proteins have been developed that encompass all known protein sequences, model specific protein families, or extrapolate the dynamics of individual proteins.
We discuss five classes of generative models that have been most successful at modeling proteins and provide a framework for model guided protein design.
arXiv Detail & Related papers (2021-08-31T14:38:26Z) - Energy-based models for atomic-resolution protein conformations [88.68597850243138]
We propose an energy-based model (EBM) of protein conformations that operates at atomic scale.
The model is trained solely on crystallized protein data.
An investigation of the model's outputs and hidden representations finds that it captures physicochemical properties relevant to protein energy.
arXiv Detail & Related papers (2020-04-27T20:45:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.