Smart City Transportation: Deep Learning Ensemble Approach for Traffic
Accident Detection
- URL: http://arxiv.org/abs/2310.10038v1
- Date: Mon, 16 Oct 2023 03:47:08 GMT
- Title: Smart City Transportation: Deep Learning Ensemble Approach for Traffic
Accident Detection
- Authors: Victor Adewopo, Nelly Elsayed
- Abstract summary: We introduce the I3D-CONVLSTM2D model architecture, a lightweight solution tailored explicitly for accident detection in smart city traffic surveillance systems.
Our experimental study's empirical analysis underscores our approach's efficacy, with the I3D-CONVLSTM2D RGB + Optical-Flow (Trainable) model outperforming its counterparts, achieving an impressive 87% Mean Average Precision (MAP)
Our research illuminates the path towards a sophisticated vision-based accident detection system primed for real-time integration into edge IoT devices within smart urban infrastructures.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The dynamic and unpredictable nature of road traffic necessitates effective
accident detection methods for enhancing safety and streamlining traffic
management in smart cities. This paper offers a comprehensive exploration study
of prevailing accident detection techniques, shedding light on the nuances of
other state-of-the-art methodologies while providing a detailed overview of
distinct traffic accident types like rear-end collisions, T-bone collisions,
and frontal impact accidents. Our novel approach introduces the I3D-CONVLSTM2D
model architecture, a lightweight solution tailored explicitly for accident
detection in smart city traffic surveillance systems by integrating RGB frames
with optical flow information. Our experimental study's empirical analysis
underscores our approach's efficacy, with the I3D-CONVLSTM2D RGB + Optical-Flow
(Trainable) model outperforming its counterparts, achieving an impressive 87\%
Mean Average Precision (MAP). Our findings further elaborate on the challenges
posed by data imbalances, particularly when working with a limited number of
datasets, road structures, and traffic scenarios. Ultimately, our research
illuminates the path towards a sophisticated vision-based accident detection
system primed for real-time integration into edge IoT devices within smart
urban infrastructures.
Related papers
- Real-time Accident Anticipation for Autonomous Driving Through Monocular Depth-Enhanced 3D Modeling [18.071748815365005]
We introduce an innovative framework, AccNet, which significantly advances the prediction capabilities beyond the current state-of-the-art (SOTA) 2D-based methods.
We propose the Binary Adaptive Loss for Early Anticipation (BA-LEA) to address the prevalent challenge of skewed data distribution in traffic accident datasets.
arXiv Detail & Related papers (2024-09-02T13:46:25Z) - Big Data and Deep Learning in Smart Cities: A Comprehensive Dataset for
AI-Driven Traffic Accident Detection and Computer Vision Systems [0.0]
This study delves into the application of cutting-edge technological methods in smart cities.
We present a novel comprehensive dataset for traffic accident detection.
This dataset is expected to advance academic research and also enhance real-time accident detection applications.
arXiv Detail & Related papers (2024-01-07T21:50:24Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - AI on the Road: A Comprehensive Analysis of Traffic Accidents and
Accident Detection System in Smart Cities [0.0]
This paper presents a comprehensive analysis of traffic accidents in different regions across the United States.
To address the challenges of accident detection and traffic analysis, this paper proposes a framework that uses traffic surveillance cameras and action recognition systems.
arXiv Detail & Related papers (2023-07-22T17:08:13Z) - Perspective Aware Road Obstacle Detection [104.57322421897769]
We show that road obstacle detection techniques ignore the fact that, in practice, the apparent size of the obstacles decreases as their distance to the vehicle increases.
We leverage this by computing a scale map encoding the apparent size of a hypothetical object at every image location.
We then leverage this perspective map to generate training data by injecting onto the road synthetic objects whose size corresponds to the perspective foreshortening.
arXiv Detail & Related papers (2022-10-04T17:48:42Z) - TAD: A Large-Scale Benchmark for Traffic Accidents Detection from Video
Surveillance [2.1076255329439304]
Existing datasets in traffic accidents are either small-scale, not from surveillance cameras, not open-sourced, or not built for freeway scenes.
After integration and annotation by various dimensions, a large-scale traffic accidents dataset named TAD is proposed in this work.
arXiv Detail & Related papers (2022-09-26T03:00:50Z) - Real-Time Accident Detection in Traffic Surveillance Using Deep Learning [0.8808993671472349]
This paper presents a new efficient framework for accident detection at intersections for traffic surveillance applications.
The proposed framework consists of three hierarchical steps, including efficient and accurate object detection based on the state-of-the-art YOLOv4 method.
The robustness of the proposed framework is evaluated using video sequences collected from YouTube with diverse illumination conditions.
arXiv Detail & Related papers (2022-08-12T19:07:20Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
We propose TransFuser, a novel Multi-Modal Fusion Transformer, to integrate image and LiDAR representations using attention.
Our approach achieves state-of-the-art driving performance while reducing collisions by 76% compared to geometry-based fusion.
arXiv Detail & Related papers (2021-04-19T11:48:13Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - Training-free Monocular 3D Event Detection System for Traffic
Surveillance [93.65240041833319]
Existing event detection systems are mostly learning-based and have achieved convincing performance when a large amount of training data is available.
In real-world scenarios, collecting sufficient labeled training data is expensive and sometimes impossible.
We propose a training-free monocular 3D event detection system for traffic surveillance.
arXiv Detail & Related papers (2020-02-01T04:42:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.