論文の概要: A simple uniformly optimal method without line search for convex
optimization
- arxiv url: http://arxiv.org/abs/2310.10082v2
- Date: Fri, 27 Oct 2023 01:59:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-30 16:40:58.146560
- Title: A simple uniformly optimal method without line search for convex
optimization
- Title(参考訳): 凸最適化のための線探索のない単純一様最適化法
- Authors: Tianjiao Li and Guanghui Lan
- Abstract要約: パラメータが優先されていない凸最適化問題の解法として最適収束率を得るには,線探索が過剰であることを示す。
滑らかな凸最適化のために最適な$mathcalO (1/k2)$収束率を達成できるAC-FGMと呼ばれる新しい勾配降下型アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 10.963511172615158
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Line search (or backtracking) procedures have been widely employed into
first-order methods for solving convex optimization problems, especially those
with unknown problem parameters (e.g., Lipschitz constant). In this paper, we
show that line search is superfluous in attaining the optimal rate of
convergence for solving a convex optimization problem whose parameters are not
given a priori. In particular, we present a novel accelerated gradient descent
type algorithm called auto-conditioned fast gradient method (AC-FGM) that can
achieve an optimal $\mathcal{O}(1/k^2)$ rate of convergence for smooth convex
optimization without requiring the estimate of a global Lipschitz constant or
the employment of line search procedures. We then extend AC-FGM to solve convex
optimization problems with H\"{o}lder continuous gradients and show that it
automatically achieves the optimal rates of convergence uniformly for all
problem classes with the desired accuracy of the solution as the only input.
Finally, we report some encouraging numerical results that demonstrate the
advantages of AC-FGM over the previously developed parameter-free methods for
convex optimization.
- Abstract(参考訳): 直線探索(またはバックトラック)手順は、凸最適化問題を解決する一階法、特に未知の問題パラメータ(例えばリプシッツ定数)に広く採用されている。
本稿では,事前パラメータが与えられていない凸最適化問題の解法において,線形探索が最適収束率の達成に過剰であることを示す。
特に,大域リプシッツ定数の見積や線探索手順を使わずに,滑らかな凸最適化に最適な$\mathcal{O}(1/k^2)$収束率を達成できる,自動条件付高速勾配法 (AC-FGM) と呼ばれる新しい加速勾配勾配型アルゴリズムを提案する。
次に、H\"{o}lder の連続勾配で凸最適化問題を解くために AC-FGM を拡張し、解の所望の精度を唯一の入力として全ての問題クラスに対して一様収束率を自動で達成することを示す。
最後に,従来開発された凸最適化のためのパラメータフリー法よりもac-fgmの利点を示す数値計算結果について報告する。
関連論文リスト
- Low-Rank Extragradient Methods for Scalable Semidefinite Optimization [0.0]
この問題が低ランクの解を許容する高次元かつ高可算な設定に焦点をあてる。
これらの条件下では、よく知られた過次法が制約付き最適化問題の解に収束することを示す理論的結果がいくつか提示される。
論文 参考訳(メタデータ) (2024-02-14T10:48:00Z) - An Accelerated Gradient Method for Convex Smooth Simple Bilevel Optimization [16.709026203727007]
下層問題の解集合を局所的に近似する新しい双レベル最適化法を提案する。
我々は,提案手法の性能を,最適度と不実現可能性の誤差の観点から測定する。
論文 参考訳(メタデータ) (2024-02-12T22:34:53Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Accelerated first-order methods for convex optimization with locally
Lipschitz continuous gradient [0.0]
まず,Lipschitz連続勾配 (LLCG) を用いた非拘束凸最適化について検討し,それを解決するための加速近位勾配 (APG) 法を提案する。
提案手法は検証可能な終端基準を備えており、演算複雑性は$cal O(varepsilon-1/2log varepsilon-1)$である。
提案手法の性能を実証するために,予備的な数値計算結果を示す。
論文 参考訳(メタデータ) (2022-06-02T10:34:26Z) - Non-Convex Optimization with Certificates and Fast Rates Through Kernel
Sums of Squares [68.8204255655161]
非最適化近似問題を考える。
本稿では,最優先計算を保証するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-04-11T09:37:04Z) - Implicit differentiation for fast hyperparameter selection in non-smooth
convex learning [87.60600646105696]
内部最適化問題が凸であるが非滑らかである場合の一階法を研究する。
本研究では, ヤコビアンの近位勾配降下と近位座標降下収率列の前方モード微分が, 正確なヤコビアンに向かって収束していることを示す。
論文 参考訳(メタデータ) (2021-05-04T17:31:28Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
近年、深層ネットワークにおける非最適化アルゴリズムの解析やデータ問題への関心が高まっており、非最適化のための理論的最適化アルゴリズムの最近の結果の概要を概説する。
論文 参考訳(メタデータ) (2020-12-11T08:28:51Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Adaptive First-and Zeroth-order Methods for Weakly Convex Stochastic
Optimization Problems [12.010310883787911]
我々は、弱凸(おそらく非滑らかな)最適化問題の重要なクラスを解くための、適応的な段階的な新しい手法の族を解析する。
実験結果から,提案アルゴリズムが0次勾配降下と設計変動を経験的に上回ることを示す。
論文 参考訳(メタデータ) (2020-05-19T07:44:52Z) - Proximal Gradient Algorithm with Momentum and Flexible Parameter Restart
for Nonconvex Optimization [73.38702974136102]
アルゴリズムの高速化のために,パラメータ再起動方式が提案されている。
本論文では,非滑らかな問題を解くアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-26T16:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。