論文の概要: A Multi-Scale Spatial Transformer U-Net for Simultaneously Automatic
Reorientation and Segmentation of 3D Nuclear Cardiac Images
- arxiv url: http://arxiv.org/abs/2310.10095v1
- Date: Mon, 16 Oct 2023 05:56:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-17 16:07:50.020422
- Title: A Multi-Scale Spatial Transformer U-Net for Simultaneously Automatic
Reorientation and Segmentation of 3D Nuclear Cardiac Images
- Title(参考訳): マルチスケール空間変圧器u-netによる3次元核心画像の自動再配向とセグメンテーション
- Authors: Yangfan Ni, Duo Zhang, Gege Ma, Lijun Lu, Zhongke Huang, Wentao Zhu
- Abstract要約: 小型のLV心筋(LV-MY)領域の検出と各患者の心構造の変化は,LVセグメンテーションに対する課題を提起する。
マルチスケール空間変換器ネットワーク(MSSTN)とマルチスケールUNet(MSUNet)モジュールを含むマルチスケール空間変換器UNet(MS-ST-UNet)と呼ばれるエンドツーエンドモデルを提案する。
提案法は,13N-アンモニアPETと99mTc-sestamibi SPECTの2つの異なる核心画像モダリティを用いて,訓練および試験を行った。
- 参考スコア(独自算出の注目度): 6.347837887930855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate reorientation and segmentation of the left ventricular (LV) is
essential for the quantitative analysis of myocardial perfusion imaging (MPI),
in which one critical step is to reorient the reconstructed transaxial nuclear
cardiac images into standard short-axis slices for subsequent image processing.
Small-scale LV myocardium (LV-MY) region detection and the diverse cardiac
structures of individual patients pose challenges to LV segmentation operation.
To mitigate these issues, we propose an end-to-end model, named as multi-scale
spatial transformer UNet (MS-ST-UNet), that involves the multi-scale spatial
transformer network (MSSTN) and multi-scale UNet (MSUNet) modules to perform
simultaneous reorientation and segmentation of LV region from nuclear cardiac
images. The proposed method is trained and tested using two different nuclear
cardiac image modalities: 13N-ammonia PET and 99mTc-sestamibi SPECT. We use a
multi-scale strategy to generate and extract image features with different
scales. Our experimental results demonstrate that the proposed method
significantly improves the reorientation and segmentation performance. This
joint learning framework promotes mutual enhancement between reorientation and
segmentation tasks, leading to cutting edge performance and an efficient image
processing workflow. The proposed end-to-end deep network has the potential to
reduce the burden of manual delineation for cardiac images, thereby providing
multimodal quantitative analysis assistance for physicists.
- Abstract(参考訳): 左室 (LV) の正確な再配向と分画は, 心筋灌流画像 (MPI) の定量的解析に不可欠である。
小型のLV心筋(LV-MY)領域の検出と各患者の心構造の変化は,LVセグメンテーションの課題となる。
これらの問題を緩和するために,マルチスケール空間トランス (MS-ST-UNet) とマルチスケール空間トランス (MSSTN) モジュールを併用したマルチスケール空間トランス (MS-ST-UNet) と呼ばれるエンド・ツー・エンドモデルを提案する。
提案法は,13N-アンモニアPETと99mTc-sestamibi SPECTの2つの異なる核心画像モダリティを用いて,訓練および試験を行った。
異なるスケールで画像特徴を生成・抽出するために,マルチスケール戦略を用いる。
実験の結果,提案手法は再配向性能とセグメンテーション性能を著しく向上することが示された。
この共同学習フレームワークは、リオリエンテーションとセグメンテーションタスクの相互強化を促進し、エッジパフォーマンスの削減と効率的な画像処理ワークフローにつながる。
提案するエンド・ツー・エンド深層ネットワークは、心画像の手動デライン化の負担を軽減する可能性があり、物理学者にマルチモーダルな定量的解析支援を提供する。
関連論文リスト
- Explicit Differentiable Slicing and Global Deformation for Cardiac Mesh Reconstruction [8.730291904586656]
医用画像からの心臓解剖のメッシュ再構築は, 形状, 運動計測, 生体物理シミュレーションに有用である。
従来のボクセルベースのアプローチは、イメージの忠実さを損なう前処理と後処理に依存している。
そこで本稿では,メッシュのスライスからメッシュへの勾配バックプロパゲーションを可能にする,新しい識別可能なボキセル化とスライシング(DVS)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-03T17:19:31Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - Joint Motion Correction and Super Resolution for Cardiac Segmentation
via Latent Optimisation [18.887520377396925]
心臓画像分割のための動作補正と超解像を共同で行う新しい潜在最適化フレームワークを提案する。
2つの心MRデータセットの実験により、提案手法は最先端の超解像法に匹敵する高い性能を達成することが示された。
論文 参考訳(メタデータ) (2021-07-08T15:14:00Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
空間変換器ネットワーク(STN)を利用することにより、ポーズとスケール不変の新たなCNNアーキテクチャを提案する。
私たちのアーキテクチャは、トレーニング中に一緒に見積もられる3つのシーケンシャルモジュールで構成されています。
腹部CTスキャナーを用いた腎および腎腫瘍の分節法について検討した。
論文 参考訳(メタデータ) (2021-07-06T14:50:03Z) - Cardiac Segmentation on CT Images through Shape-Aware Contour Attentions [1.212901554957637]
心臓臓器は複数のサブ構造(心室、心房、大動脈、動脈、静脈、心筋)から構成される。
これらの心筋サブ構造は互いに近縁であり、識別不能な境界を持つ。
形状と境界認識機能を利用する新しいモデルを提案する。
論文 参考訳(メタデータ) (2021-05-27T13:54:59Z) - Patch-based field-of-view matching in multi-modal images for
electroporation-based ablations [0.6285581681015912]
マルチモーダルイメージングセンサーは、現在、介入治療作業フローの異なるステップに関与している。
この情報を統合するには、取得した画像間の観測された解剖の正確な空間的アライメントに依存する。
本稿では, ボクセルパッチを用いた地域登録手法が, ボクセルワイドアプローチと「グローバルシフト」アプローチとの間に優れた構造的妥協をもたらすことを示す。
論文 参考訳(メタデータ) (2020-11-09T11:27:45Z) - Enhanced 3D Myocardial Strain Estimation from Multi-View 2D CMR Imaging [0.0]
CMR SSFP画像からの複数方向からの相補的変位情報を組み合わせた3次元心筋ひずみ推定法を提案する。
商用ソフトウェア(セグメント,メドビソ)に実装された2次元非剛性登録アルゴリズムを用いて,短軸,4角,2角のビューのセットを登録する。
次に, 運動3方向の補間関数を作成し, 患者固有の左室の四面体メッシュ表現を変形させる。
論文 参考訳(メタデータ) (2020-09-25T22:47:50Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
我々は、Synergistic Image and Feature Alignment (SIFA)と名付けられた新しい教師なしドメイン適応フレームワークを提案する。
提案するSIFAは、画像と特徴の両方の観点から、ドメインの相乗的アライメントを行う。
2つの異なるタスクに対する実験結果から,SIFA法は未ラベル対象画像のセグメンテーション性能を向上させるのに有効であることが示された。
論文 参考訳(メタデータ) (2020-02-06T13:49:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。