Atomic photoexcitation as a tool for probing purity of twisted light
modes
- URL: http://arxiv.org/abs/2310.10197v2
- Date: Mon, 29 Jan 2024 08:27:08 GMT
- Title: Atomic photoexcitation as a tool for probing purity of twisted light
modes
- Authors: R. P. Schmidt, S. Ramakrishna, A. A. Peshkov, N. Huntemann, E. Peik,
S. Fritzsche, A. Surzhykov
- Abstract summary: The twisted light modes used in atomic physics experiments can be contaminated by small admixtures of plane wave radiation.
The proposed method is based on the analysis of the magnetic sublevel population of atoms or ions interacting with the "twisted + plane wave" radiation.
We find that even tiny admixtures of plane wave radiation can lead to remarkable variations in the populations of the ground-state magnetic sublevels.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The twisted light modes used in modern atomic physics experiments can be
contaminated by small admixtures of plane wave radiation. Although these
admixtures hardly reveal themselves in the beam intensity profile, they may
seriously affect the outcome of high precision spectroscopy measurements. In
the present study we propose a method for diagnosing such a plane wave
contamination, which is based on the analysis of the magnetic sublevel
population of atoms or ions interacting with the "twisted + plane wave"
radiation. In order to theoretically investigate the sublevel populations, we
solve the Liouville-von Neumann equation for the time evolution of atomic
density matrix. The proposed method is illustrated for the electric dipole $5s
\, {}^{2}\mathrm{S}_{1/2} \, - \, 5p \, {}^{2}\mathrm{P}_{3/2}$ transition in
Rb induced by (linearly, radially, or azimuthally polarized) vortex light with
just a small contamination. We find that even tiny admixtures of plane wave
radiation can lead to remarkable variations in the populations of the
ground-state magnetic sublevels. This opens up new opportunities for
diagnostics of twisted light in atomic spectroscopy experiments.
Related papers
- Ultracold Neutrons in the Low Curvature Limit: Remarks on the
post-Newtonian effects [49.1574468325115]
We apply a perturbative scheme to derive the non-relativistic Schr"odinger equation in curved spacetime.
We calculate the next-to-leading order corrections to the neutron's energy spectrum.
While the current precision for observations of ultracold neutrons may not yet enable to probe them, they could still be relevant in the future or in alternative circumstances.
arXiv Detail & Related papers (2023-12-30T16:45:56Z) - Theory of nonlinear sub-Doppler laser spectroscopy taking into account
atomic-motion-induced density-dependent effects in a gas [0.0]
We develop a self-consistent solution of the Maxwell-Bloch equations in the mean field and single-atom density matrix approximations.
This makes it possible to correctly take into account the effects caused by the free motion of atoms in a gas.
Within the framework of this approach, analytical expressions for the light field were obtained for an arbitrary number of resonant waves and arbitrary optical thickness of a gas medium.
arXiv Detail & Related papers (2023-11-21T14:18:48Z) - A Universal Method to Generate Hyperpolarisation in Beams and Samples [0.0]
We show that the quantum interference of transitions induced by radio-wave pumping with longitudinal and radial pulses are able to produce large polarisations at small magnetic fields.
This technique opens the door for a new generation of polarised tracers, possibly low-field MRI with better spatial resolution or the production of polarised fuel to increase the efficiency of fusion reactors.
arXiv Detail & Related papers (2023-11-10T10:20:50Z) - Driven-dissipative four-mode squeezing of multilevel atoms in an optical
cavity [0.0]
We utilize multilevel atoms trapped in a driven resonant optical cavity to produce scalable multi-mode squeezed states.
We show that in this more general system up to four spin squeezed quadratures can be obtained.
arXiv Detail & Related papers (2023-09-19T16:02:15Z) - The maximum refractive index of an atomic crystal $\unicode{x2013}$ from
quantum optics to quantum chemistry [52.77024349608834]
We investigate the index of an ordered arrangement of atoms, as a function of atomic density.
In quantum optics, we show that ideal light-matter interactions can have a single-mode nature.
At the onset of quantum chemistry, we show how two physical mechanisms can open up inelastic or spatial multi-mode light scattering processes.
arXiv Detail & Related papers (2023-03-20T10:29:12Z) - Motion induced excitation and electromagnetic radiation from an atom
facing a thin mirror [62.997667081978825]
We evaluate the probability of (de-)excitation and photon emission from a neutral, moving, non-relativistic atom, coupled to a quantum electromagnetic field and in the presence of a thin, perfectly conducting plane ("mirror")
Results extend to a more realistic model, where the would-be electron was described by a scalar variable, coupled to an (also scalar) vacuum field.
arXiv Detail & Related papers (2022-07-06T20:54:59Z) - Measurements of blackbody radiation-induced transition rates between
high-lying S, P and D Rydberg levels [47.187609203210705]
We report experimental measurements of the rates of blackbody radiation-induced transitions between high-lying (n>60) S, P and D Rydberg levels of rubidium atoms in a magneto-optical trap.
Our results reveal significant deviations of the measured transition rates from theory for well-defined ranges of the principal quantum number.
We conclude that it should be possible to use such external cavities to control and suppress the blackbody radiation-induced transitions.
arXiv Detail & Related papers (2021-11-30T12:22:32Z) - Double-twisted spectroscopy with delocalized atoms [0.0]
In almost all studies of light-atom interaction, the atom is viewed as a localized probe of the twisted light field.
This paper argues that conceptually novel effects will arise if light-atom interaction is studied in the double-twisted regime with delocalized atoms.
arXiv Detail & Related papers (2021-08-13T03:40:43Z) - Maximum refractive index of an atomic medium [58.720142291102135]
All optical materials with a positive refractive index have a value of index that is of order unity.
Despite the giant response of an isolated atom, we find that the maximum index does not indefinitely grow with increasing density.
We propose an explanation based upon strong-disorder renormalization group theory.
arXiv Detail & Related papers (2020-06-02T14:57:36Z) - Resonant high-energy bremsstrahlung of ultrarelativistic electrons in
the field of a nucleus and a pulsed light wave [68.8204255655161]
Research investigates the resonant high-energy spontaneous bremsstrahlung of ultrarelativistic electrons with considerable energies in the field of a nucleus and a quasimonochromatic laser wave.
arXiv Detail & Related papers (2020-04-05T16:27:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.