Charged particle reconstruction for future high energy colliders with
Quantum Approximate Optimization Algorithm
- URL: http://arxiv.org/abs/2310.10255v2
- Date: Tue, 12 Dec 2023 01:53:56 GMT
- Title: Charged particle reconstruction for future high energy colliders with
Quantum Approximate Optimization Algorithm
- Authors: Hideki Okawa
- Abstract summary: The charged particle reconstruction, the so-called track reconstruction, can be considered as a quadratic unconstrained binary optimization problem.
The Quantum Approximate Optimization Algorithm (QAOA) is one of the most promising algorithms to solve such problems and to seek for a quantum advantage.
It is found that the QAOA shows promising performance and demonstrated itself as one of the candidates for the track reconstruction using quantum computers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Usage of cutting-edge artificial intelligence will be the baseline at future
high energy colliders such as the High Luminosity Large Hadron Collider, to
cope with the enormously increasing demand of the computing resources. The
rapid development of quantum machine learning could bring in further
paradigm-shifting improvement to this challenge. One of the two highest
CPU-consuming components, the charged particle reconstruction, the so-called
track reconstruction, can be considered as a quadratic unconstrained binary
optimization (QUBO) problem. The Quantum Approximate Optimization Algorithm
(QAOA) is one of the most promising algorithms to solve such combinatorial
problems and to seek for a quantum advantage in the era of the Noisy
Intermediate-Scale Quantum computers. It is found that the QAOA shows promising
performance and demonstrated itself as one of the candidates for the track
reconstruction using quantum computers.
Related papers
- Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum-Annealing-Inspired Algorithms for Track Reconstruction at High-Energy Colliders [0.0]
Track reconstruction can be formulated as a quadratic unconstrained binary optimization problem.
We show that simulated bifurcation algorithms can be employed to solve the particle tracking problem.
arXiv Detail & Related papers (2024-02-22T17:19:03Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Particle track reconstruction with noisy intermediate-scale quantum
computers [0.0]
Reconstruction of trajectories of charged particles is a key computational challenge for current and future collider experiments.
The problem can be formulated as a quadratic unconstrained binary optimization (QUBO) and solved using the variational quantum eigensolver (VQE) algorithm.
This work serves as a proof of principle that the VQE could be used for particle tracking and investigates modifications of the VQE to make it more suitable for optimization.
arXiv Detail & Related papers (2023-03-23T13:29:20Z) - On-the-fly Tailoring towards a Rational Ansatz Design for Digital
Quantum Simulations [0.0]
It is imperative to develop low depth quantum circuits that are physically realizable in quantum devices.
We develop a disentangled ansatz construction protocol that can dynamically tailor an optimal ansatz.
The construction of the ansatz may potentially be performed in parallel quantum architecture through energy sorting and operator commutativity prescreening.
arXiv Detail & Related papers (2023-02-07T11:22:01Z) - The Future of Quantum Computing with Superconducting Qubits [2.6668731290542222]
We see a branching point in computing paradigms with the emergence of quantum processing units (QPUs)
Extracting the full potential of computation and realizing quantum algorithms with a super-polynomial speedup will most likely require major advances in quantum error correction technology.
Long term, we see hardware that exploits qubit connectivity in higher than 2D topologies to realize more efficient quantum error correcting codes.
arXiv Detail & Related papers (2022-09-14T18:00:03Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.