論文の概要: Leveraging heterogeneous spillover effects in maximizing contextual
bandit rewards
- arxiv url: http://arxiv.org/abs/2310.10259v1
- Date: Mon, 16 Oct 2023 10:34:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-18 01:36:31.297313
- Title: Leveraging heterogeneous spillover effects in maximizing contextual
bandit rewards
- Title(参考訳): 文脈的包帯報酬の最大化における不均一な流出効果の活用
- Authors: Ahmed Sayeed Faruk, Elena Zheleva
- Abstract要約: このような異質な流出を考慮に入れた文脈的マルチアームバンディットを実現するフレームワークを提案する。
提案手法は, 流出を無視する既存のソリューションよりも, はるかに高い報酬をもたらす。
- 参考スコア(独自算出の注目度): 12.533920403498453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recommender systems relying on contextual multi-armed bandits continuously
improve relevant item recommendations by taking into account the contextual
information. The objective of these bandit algorithms is to learn the best arm
(i.e., best item to recommend) for each user and thus maximize the cumulative
rewards from user engagement with the recommendations. However, current
approaches ignore potential spillover between interacting users, where the
action of one user can impact the actions and rewards of other users. Moreover,
spillover may vary for different people based on their preferences and the
closeness of ties to other users. This leads to heterogeneity in the spillover
effects, i.e., the extent to which the action of one user can impact the action
of another. Here, we propose a framework that allows contextual multi-armed
bandits to account for such heterogeneous spillovers when choosing the best arm
for each user. By experimenting on several real-world datasets using prominent
linear and non-linear contextual bandit algorithms, we observe that our
proposed method leads to significantly higher rewards than existing solutions
that ignore spillover.
- Abstract(参考訳): コンテクストマルチアームバンドに依存するレコメンダシステムは、コンテクスト情報を考慮して、関連するアイテムレコメンデーションを継続的に改善する。
これらのバンディットアルゴリズムの目的は、各ユーザの最高のアーム(推奨すべき最善のアイテム)を学習し、ユーザのレコメンデーションによる累積報酬を最大化することである。
しかしながら、現在のアプローチでは、あるユーザのアクションが他のユーザのアクションや報酬に影響を与える可能性がある、インタラクションユーザ間の潜在的な流出を無視している。
さらに、他人の好みや、他のユーザーとの結びつきの近さによって、引きこもりは異なる可能性がある。
これにより、あるユーザのアクションが他のユーザのアクションにどの程度影響するかという、スプリンクラー効果の不均一性が生じる。
本稿では,各ユーザに対して最適なアームを選択する際に,コンテキスト的マルチアームバンディットを考慮に入れたフレームワークを提案する。
線形および非線形の文脈的バンディットアルゴリズムを用いて,実世界のデータセットを複数実験することにより,提案手法が流出を無視する既存の解よりも高い報酬をもたらすことを検証した。
関連論文リスト
- The Nah Bandit: Modeling User Non-compliance in Recommendation Systems [2.421459418045937]
Expert with Clustering(EWC)は、推奨オプションと推奨されないオプションの両方からのフィードバックを取り入れた階層的なアプローチで、ユーザの好み学習を加速する。
EWCは教師付き学習と伝統的な文脈的バンディットアプローチの両方を上回ります。
この研究は、より効果的なレコメンデーションシステムのための堅牢なフレームワークを提供する、Nah Banditにおける将来の研究の基礎を築いた。
論文 参考訳(メタデータ) (2024-08-15T03:01:02Z) - Relevance meets Diversity: A User-Centric Framework for Knowledge Exploration through Recommendations [15.143224593682012]
本稿では,コプラ関数による妥当性と多様性を組み合わせた新しいレコメンデーション戦略を提案する。
我々は,システムと対話しながらユーザから得た知識量のサロゲートとして多様性を利用する。
我々の戦略は、最先端のライバル数社を上回っている。
論文 参考訳(メタデータ) (2024-08-07T13:48:24Z) - Neural Dueling Bandits [58.90189511247936]
ニューラルネットワークを用いて、予め選択した腕の好みフィードバックを用いて報酬関数を推定する。
次に、理論結果を二項フィードバックによる文脈的帯域幅問題に拡張し、それはそれ自体は自明な寄与ではない。
論文 参考訳(メタデータ) (2024-07-24T09:23:22Z) - Beyond Item Dissimilarities: Diversifying by Intent in Recommender Systems [20.04619904064599]
我々は,提案システムの最終段階を対象とした確率論的意図に基づく全ページ多様化フレームワークを開発する。
さまざまな意図のライブ実験は、私たちのフレームワークがデイリーアクティブユーザーを増やし、全体のユーザーを楽しませていることを示している。
論文 参考訳(メタデータ) (2024-05-20T18:52:33Z) - Contrastive Learning Method for Sequential Recommendation based on Multi-Intention Disentanglement [5.734747179463411]
MIDCL(Multi-Intention Disentanglement)に基づくコントラスト学習シーケンシャルレコメンデーション手法を提案する。
私たちの仕事では、意図は動的で多様なものとして認識され、ユーザの振る舞いは、しばしば現在のマルチインテンションによって駆動されます。
本稿では,最も関連性の高いユーザの対話的意図の探索と,正のサンプル対の相互情報の最大化のための2種類のコントラスト学習パラダイムを提案する。
論文 参考訳(メタデータ) (2024-04-28T15:13:36Z) - Incentive-Aware Recommender Systems in Two-Sided Markets [49.692453629365204]
最適性能を達成しつつエージェントのインセンティブと整合する新しいレコメンデータシステムを提案する。
我々のフレームワークは、このインセンティブを意識したシステムを、両側市場におけるマルチエージェントバンディット問題としてモデル化する。
どちらのアルゴリズムも、エージェントが過剰な露出から保護する、ポストフェアネス基準を満たす。
論文 参考訳(メタデータ) (2022-11-23T22:20:12Z) - Modeling Attrition in Recommender Systems with Departing Bandits [84.85560764274399]
政策に依存した地平線を捉えた新しいマルチアームバンディット構成を提案する。
まず、全てのユーザが同じタイプを共有しているケースに対処し、最近の UCB ベースのアルゴリズムが最適であることを実証する。
次に、ユーザが2つのタイプに分けられる、より困難なケースを前進させます。
論文 参考訳(メタデータ) (2022-03-25T02:30:54Z) - BanditMF: Multi-Armed Bandit Based Matrix Factorization Recommender
System [0.0]
マルチアーム・バンディット(MAB)は、探索と搾取のバランスをとるために原則化されたオンライン学習アプローチを提供する。
協調フィルタリング(CF)は、おそらく推奨システムにおいて最も早く、最も影響力のある手法である。
BanditMFは、マルチアームバンディットアルゴリズムと協調フィルタリングの2つの課題に対処するように設計されている。
論文 参考訳(メタデータ) (2021-06-21T07:35:39Z) - Partial Bandit and Semi-Bandit: Making the Most Out of Scarce Users'
Feedback [62.997667081978825]
本稿では,ユーザのフィードバックを考慮し,3つの戦略を用いて評価する手法を提案する。
ユーザからのフィードバックが制限されているにも関わらず(全体の20%以下)、我々の手法は最先端のアプローチと同じような結果が得られる。
論文 参考訳(メタデータ) (2020-09-16T07:32:51Z) - Fairness-Aware Explainable Recommendation over Knowledge Graphs [73.81994676695346]
ユーザのアクティビティのレベルに応じて異なるグループのユーザを分析し、異なるグループ間での推奨パフォーマンスにバイアスが存在することを確認する。
不活性なユーザは、不活性なユーザのためのトレーニングデータが不十分なため、不満足なレコメンデーションを受けやすい可能性がある。
本稿では、知識グラフに対する説明可能な推奨という文脈で、この問題を緩和するために再ランク付けすることで、公平性に制約されたアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-03T05:04:38Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
制約強化強化学習(RL)フレームワークを提案する。
具体的には,ユーザの過去の嗜好に反するレコメンデーションを検出するために,識別器を利用する。
提案するフレームワークは汎用的であり,制約付きテキスト生成のタスクにさらに拡張されている。
論文 参考訳(メタデータ) (2020-05-04T16:23:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。