論文の概要: Optimized Layerwise Approximation for Efficient Private Inference on Fully Homomorphic Encryption
- arxiv url: http://arxiv.org/abs/2310.10349v3
- Date: Wed, 29 May 2024 01:00:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 11:43:58.608171
- Title: Optimized Layerwise Approximation for Efficient Private Inference on Fully Homomorphic Encryption
- Title(参考訳): 完全同型暗号化における効率的なプライベート推論のための最適層近似
- Authors: Junghyun Lee, Eunsang Lee, Young-Sik Kim, Yongwoo Lee, Joon-Woo Lee, Yongjune Kim, Jong-Seon No,
- Abstract要約: 本研究では、プライバシー保護型ディープニューラルネットワークのための最適化レイヤワイド近似(OLA)フレームワークを提案する。
効率的な近似のために、各アクティベーション関数の実際の入力分布を考慮し、階層的精度を反映する。
その結果、OLA法はResNet-20モデルとResNet-32モデルの推論時間をそれぞれ3.02倍と2.82倍に削減した。
- 参考スコア(独自算出の注目度): 17.010625600442584
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent studies have explored the deployment of privacy-preserving deep neural networks utilizing homomorphic encryption (HE), especially for private inference (PI). Many works have attempted the approximation-aware training (AAT) approach in PI, changing the activation functions of a model to low-degree polynomials that are easier to compute on HE by allowing model retraining. However, due to constraints in the training environment, it is often necessary to consider post-training approximation (PTA), using the pre-trained parameters of the existing plaintext model without retraining. Existing PTA studies have uniformly approximated the activation function in all layers to a high degree to mitigate accuracy loss from approximation, leading to significant time consumption. This study proposes an optimized layerwise approximation (OLA), a systematic framework that optimizes both accuracy loss and time consumption by using different approximation polynomials for each layer in the PTA scenario. For efficient approximation, we reflect the layerwise impact on the classification accuracy by considering the actual input distribution of each activation function while constructing the optimization problem. Additionally, we provide a dynamic programming technique to solve the optimization problem and achieve the optimized layerwise degrees in polynomial time. As a result, the OLA method reduces inference times for the ResNet-20 model and the ResNet-32 model by 3.02 times and 2.82 times, respectively, compared to prior state-of-the-art implementations employing uniform degree polynomials. Furthermore, we successfully classified CIFAR-10 by replacing the GELU function in the ConvNeXt model with only 3-degree polynomials using the proposed method, without modifying the backbone model.
- Abstract(参考訳): 近年の研究では、特にプライベート推論(PI)において、ホモモルフィック暗号化(HE)を利用したプライバシー保護型ディープニューラルネットワークの展開について検討されている。
多くの研究がPIにおける近似アウェアトレーニング(AAT)アプローチを試みており、モデルの活性化関数を、モデル再訓練を可能にしてHE上での計算が容易な低次多項式に変更している。
しかし, トレーニング環境における制約のため, 既存の平文モデルの事前学習パラメータを用いて, トレーニング後近似(PTA)を検討する必要がある場合が多い。
既存のPTA研究は、全ての層における活性化関数を高精度に近似し、近似による精度損失を軽減し、かなりの時間を消費している。
本研究では,PTAシナリオの各レイヤ毎に異なる近似多項式を用いて,精度損失と時間消費の両方を最適化する,最適化層近似(OLA)を提案する。
効率的な近似のために、最適化問題を構築しながら、各アクティベーション関数の実際の入力分布を考慮し、分類精度に対する階層的な影響を反映する。
さらに,最適化問題を解く動的プログラミング手法を提供し,多項式時間で最適化された階層次数を実現する。
その結果、OLA法は、一様次多項式を用いた従来の最先端実装と比較して、ResNet-20モデルとResNet-32モデルの推論時間をそれぞれ3.02倍と2.82倍に削減した。
さらに,CIFAR-10を,背骨モデルを変更することなく,CovNeXtモデルのGELU関数を3次多項式のみに置き換えることによって分類した。
関連論文リスト
- A domain decomposition-based autoregressive deep learning model for unsteady and nonlinear partial differential equations [2.7755345520127936]
非定常・非線形偏微分方程式(PDE)を正確にモデル化するためのドメイン分割型ディープラーニング(DL)フレームワークCoMLSimを提案する。
このフレームワークは、(a)畳み込みニューラルネットワーク(CNN)ベースのオートエンコーダアーキテクチャと(b)完全に接続された層で構成される自己回帰モデルという、2つの重要なコンポーネントで構成されている。
論文 参考訳(メタデータ) (2024-08-26T17:50:47Z) - Differentially Private Optimization with Sparse Gradients [60.853074897282625]
微分プライベート(DP)最適化問題を個人勾配の空間性の下で検討する。
これに基づいて、スパース勾配の凸最適化にほぼ最適な速度で純粋および近似DPアルゴリズムを得る。
論文 参考訳(メタデータ) (2024-04-16T20:01:10Z) - Edge-Efficient Deep Learning Models for Automatic Modulation Classification: A Performance Analysis [0.7428236410246183]
無線信号の自動変調分類(AMC)のための最適化畳み込みニューラルネットワーク(CNN)について検討した。
本稿では,これらの手法を組み合わせて最適化モデルを提案する。
実験結果から,提案手法と組み合わせ最適化手法は,複雑度が著しく低いモデルの開発に極めて有効であることが示唆された。
論文 参考訳(メタデータ) (2024-04-11T06:08:23Z) - Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGM) は、ロボット工学やコンピュータグラフィックスにおける連続的な制御タスクに広く採用されている。
近年の研究では、長期強化学習問題に適用した場合、モデルベースRP PGMはカオス的かつ非滑らかな最適化環境を経験する可能性があることが示されている。
本稿では,長期モデルアンロールによる爆発的分散問題を緩和するスペクトル正規化法を提案する。
論文 参考訳(メタデータ) (2023-10-30T18:43:21Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Adaptive LASSO estimation for functional hidden dynamic geostatistical
model [69.10717733870575]
関数型隠れ統計モデル(f-HD)のためのペナル化極大推定器(PMLE)に基づく新しいモデル選択アルゴリズムを提案する。
このアルゴリズムは反復最適化に基づいており、適応最小限の収縮・セレクタ演算子(GMSOLAS)ペナルティ関数を用いており、これは不給付のf-HD最大線量推定器によって得られる。
論文 参考訳(メタデータ) (2022-08-10T19:17:45Z) - Sample-efficient Iterative Lower Bound Optimization of Deep Reactive
Policies for Planning in Continuous MDPs [27.41101006357176]
本研究では,最小化-最大化の観点から反復的に最適化する。
w.r.t.は局所的に厳密な下界の目的である。
反復的下界最適化(ILBO)としての学習の新たな定式化は、(i)各ステップが全体目標よりも構造的に容易に最適化できるため、特に魅力的である。
実験的な評価により、ILBOは最先端のプランナーよりもはるかに試料効率が高いことが確認された。
論文 参考訳(メタデータ) (2022-03-23T19:06:16Z) - Logistic Q-Learning [87.00813469969167]
MDPにおける最適制御の正規化線形プログラミング定式化から導いた新しい強化学習アルゴリズムを提案する。
提案アルゴリズムの主な特徴は,広範に使用されているベルマン誤差の代わりとして理論的に音声として機能する,政策評価のための凸損失関数である。
論文 参考訳(メタデータ) (2020-10-21T17:14:31Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast
Convergence [30.393999722555154]
本稿では,古典的ポリアクステップサイズ (Polyak, 1987) の亜次法でよく用いられる変種を提案する。
The proposed Polyak step-size (SPS) is a attractive choice for set the learning rate for gradient descent。
論文 参考訳(メタデータ) (2020-02-24T20:57:23Z) - Adaptive Approximate Policy Iteration [22.915651391812187]
均一なエルゴディックMDPの学習を継続する学習方法として,$tildeO(T2/3)$ regret bound for undiscounted, continuing learning in uniformly ergodic MDPを提案する。
これは、関数近似を持つ平均逆ケースに対する$tildeO(T3/4)$の最良の既存の境界よりも改善されている。
論文 参考訳(メタデータ) (2020-02-08T02:27:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。