A Novel Benchmarking Paradigm and a Scale- and Motion-Aware Model for
Egocentric Pedestrian Trajectory Prediction
- URL: http://arxiv.org/abs/2310.10424v1
- Date: Mon, 16 Oct 2023 14:08:34 GMT
- Title: A Novel Benchmarking Paradigm and a Scale- and Motion-Aware Model for
Egocentric Pedestrian Trajectory Prediction
- Authors: Amir Rasouli
- Abstract summary: We present a new paradigm for evaluating egocentric pedestrian trajectory prediction algorithms.
We show that our approach achieves significant improvement by up to 40% in challenging scenarios.
- Score: 7.306417438683524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting pedestrian behavior is one of the main challenges for intelligent
driving systems. In this paper, we present a new paradigm for evaluating
egocentric pedestrian trajectory prediction algorithms. Based on various
contextual information, we extract driving scenarios for a meaningful and
systematic approach to identifying challenges for prediction models. In this
regard, we also propose a new metric for more effective ranking within the
scenario-based evaluation. We conduct extensive empirical studies of existing
models on these scenarios to expose shortcomings and strengths of different
approaches. The scenario-based analysis highlights the importance of using
multimodal sources of information and challenges caused by inadequate modeling
of ego-motion and scale of pedestrians. To this end, we propose a novel
egocentric trajectory prediction model that benefits from multimodal sources of
data fused in an effective and efficient step-wise hierarchical fashion and two
auxiliary tasks designed to learn more robust representation of scene dynamics.
We show that our approach achieves significant improvement by up to 40% in
challenging scenarios compared to the past arts via empirical evaluation on
common benchmark datasets.
Related papers
- On-Road Object Importance Estimation: A New Dataset and A Model with Multi-Fold Top-Down Guidance [70.80612792049315]
This paper contributes a new large-scale dataset named Traffic Object Importance (TOI)
It proposes a model that integrates multi-fold top-down guidance with the bottom-up feature.
Our model outperforms state-of-the-art methods by large margins.
arXiv Detail & Related papers (2024-11-26T06:37:10Z) - Motion Forecasting via Model-Based Risk Minimization [8.766024024417316]
We propose a novel sampling method applicable to trajectory prediction based on the predictions of multiple models.
We first show that conventional sampling based on predicted probabilities can degrade performance due to missing alignment between models.
By using state-of-the-art models as base learners, our approach constructs diverse and effective ensembles for optimal trajectory sampling.
arXiv Detail & Related papers (2024-09-16T09:03:28Z) - Enhanced Prediction of Multi-Agent Trajectories via Control Inference and State-Space Dynamics [14.694200929205975]
This paper introduces a novel methodology for trajectory forecasting based on state-space dynamic system modeling.
To enhance the precision of state estimations within the dynamic system, the paper also presents a novel modeling technique for control variables.
The proposed approach ingeniously integrates graph neural networks with state-space models, effectively capturing the complexities of multi-agent interactions.
arXiv Detail & Related papers (2024-08-08T08:33:02Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - DICE: Diverse Diffusion Model with Scoring for Trajectory Prediction [7.346307332191997]
We present a novel framework that leverages diffusion models for predicting future trajectories in a computationally efficient manner.
We employ an efficient sampling mechanism that allows us to maximize the number of sampled trajectories for improved accuracy.
We show the effectiveness of our approach by conducting empirical evaluations on common pedestrian (UCY/ETH) and autonomous driving (nuScenes) benchmark datasets.
arXiv Detail & Related papers (2023-10-23T05:04:23Z) - Are Neural Topic Models Broken? [81.15470302729638]
We study the relationship between automated and human evaluation of topic models.
We find that neural topic models fare worse in both respects compared to an established classical method.
arXiv Detail & Related papers (2022-10-28T14:38:50Z) - LatentFormer: Multi-Agent Transformer-Based Interaction Modeling and
Trajectory Prediction [12.84508682310717]
We propose LatentFormer, a transformer-based model for predicting future vehicle trajectories.
We evaluate the proposed method on the nuScenes benchmark dataset and show that our approach achieves state-of-the-art performance and improves upon trajectory metrics by up to 40%.
arXiv Detail & Related papers (2022-03-03T17:44:58Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions.
Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many.
Our work addresses two key challenges in trajectory prediction, learning outputs, and better predictions by imposing constraints using driving knowledge.
arXiv Detail & Related papers (2021-04-16T17:58:56Z) - Forethought and Hindsight in Credit Assignment [62.05690959741223]
We work to understand the gains and peculiarities of planning employed as forethought via forward models or as hindsight operating with backward models.
We investigate the best use of models in planning, primarily focusing on the selection of states in which predictions should be (re)-evaluated.
arXiv Detail & Related papers (2020-10-26T16:00:47Z) - Pedestrian Trajectory Prediction with Convolutional Neural Networks [0.3787359747190393]
We propose a new approach to pedestrian trajectory prediction, with the introduction of a novel 2D convolutional model.
This new model outperforms recurrent models, and it achieves state-of-the-art results on the ETH and TrajNet datasets.
We also present an effective system to represent pedestrian positions and powerful data augmentation techniques.
arXiv Detail & Related papers (2020-10-12T15:51:01Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.